Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39066178

RESUMO

Hepatitis B virus (HBV) infection leads to around 800,000 deaths yearly and is considered to be a major public health problem worldwide. However, HBV origins remain poorly understood. Here, we looked for bat HBV (BtHBV) in different bat species in Gabon to investigate the role of these animals as carriers of ancestral hepadnaviruses because these viruses are much more diverse in bats than in other host species. DNA was extracted from 859 bat livers belonging to 11 species collected in caves and villages in the southeast of Gabon and analyzed using PCRs targeting the surface gene. Positive samples were sequenced using the Sanger method. BtHBV DNA was detected in 64 (7.4%) individuals belonging to eight species mainly collected in caves. Thirty-six (36) sequences among the 37 obtained after sequencing were phylogenetically close to the RBHBV strain recently isolated in Gabonese bats, while the remaining sequence was close to a rodent HBV strain isolated in America. The generalized linear mixed model showed that the variable species best explained the occurrence of BtHBV infection in bats. The discovery of a BtHBV strain homologous to a rodent strain in bats raises the possibility that these animals may be carriers of ancestral hepadnaviruses.


Assuntos
Quirópteros , Variação Genética , Vírus da Hepatite B , Hepatite B , Filogenia , Quirópteros/virologia , Animais , Gabão/epidemiologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/classificação , Vírus da Hepatite B/isolamento & purificação , Prevalência , Hepatite B/virologia , Hepatite B/epidemiologia , Hepatite B/veterinária , DNA Viral/genética , Análise de Sequência de DNA
2.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38798379

RESUMO

Species distributed across heterogeneous environments often evolve locally adapted populations, but understanding how these persist in the presence of homogenizing gene flow remains puzzling. In Gabon, Anopheles coluzzii, a major African malaria mosquito is found along an ecological gradient, including a sylvatic population, away of any human presence. This study identifies into the genomic signatures of local adaptation in populations from distinct environments including the urban area of Libreville, and two proximate sites 10km apart in the La Lopé National Park (LLP), a village and its sylvatic neighborhood. Whole genome re-sequencing of 96 mosquitoes unveiled ∼ 5.7millions high-quality single nucleotide polymorphisms. Coalescent-based demographic analyses suggest an ∼ 8,000-year-old divergence between Libreville and La Lopé populations, followed by a secondary contact ( ∼ 4,000 ybp) resulting in asymmetric effective gene flow. The urban population displayed reduced effective size, evidence of inbreeding, and strong selection pressures for adaptation to urban settings, as suggested by the hard selective sweeps associated with genes involved in detoxification and insecticide resistance. In contrast, the two geographically proximate LLP populations showed larger effective sizes, and distinctive genomic differences in selective signals, notably soft-selective sweeps on the standing genetic variation. Although neutral loci and chromosomal inversions failed to discriminate between LLP populations, our findings support that microgeographic adaptation can swiftly emerge through selection on standing genetic variation despite high gene flow. This study contributes to the growing understanding of evolution of populations in heterogeneous environments amid ongoing gene flow and how major malaria mosquitoes adapt to human. Significance: Anopheles coluzzii , a major African malaria vector, thrives from humid rainforests to dry savannahs and coastal areas. This ecological success is linked to its close association with domestic settings, with human playing significant roles in driving the recent urban evolution of this mosquito. Our research explores the assumption that these mosquitoes are strictly dependent on human habitats, by conducting whole-genome sequencing on An. coluzzii specimens from urban, rural, and sylvatic sites in Gabon. We found that urban mosquitoes show de novo genetic signatures of human-driven vector control, while rural and sylvatic mosquitoes exhibit distinctive genetic evidence of local adaptations derived from standing genetic variation. Understanding adaptation mechanisms of this mosquito is therefore crucial to predict evolution of vector control strategies.

3.
Sci Rep ; 11(1): 15781, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349141

RESUMO

In Central Africa, the malaria vector Anopheles coluzzii is predominant in urban and coastal habitats. However, little is known about the environmental factors that may be involved in this process. Here, we performed an analysis of 28 physicochemical characteristics of 59 breeding sites across 5 urban and rural sites in coastal areas of Central Africa. We then modelled the relative frequency of An. coluzzii larvae to these physicochemical parameters in order to investigate environmental patterns. Then, we assessed the expression variation of 10 candidate genes in An. coluzzii, previously incriminated with insecticide resistance and osmoregulation in urban settings. Our results confirmed the ecological plasticity of An. coluzzii larvae to breed in a large range of aquatic conditions and its predominance in breeding sites rich in ions. Gene expression patterns were comparable between urban and rural habitats, suggesting a broad response to ions concentrations of whatever origin. Altogether, An. coluzzii exhibits a plastic response to occupy both coastal and urban habitats. This entails important consequences for malaria control in the context of the rapid urban expansion in Africa in the coming years.


Assuntos
Anopheles/genética , Ecossistema , Larva/genética , África Central , Animais , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Fenômenos Químicos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Íons , Larva/efeitos dos fármacos , Larva/fisiologia , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores/genética , Osmorregulação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA