Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 52: 131-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26338126

RESUMO

Lot of articles report on the impact of polyphenols on wine lactic acid bacteria, but it is clear that the results still remain confusing, because the system is complicated both in term of chemical composition and of diversity of strains. In addition, red wines polyphenols are multiple, complex and reactive molecules. Moreover, the final composition of wine varies according to grape variety and to extraction during winemaking. Therefore it is nearly impossible to deduce their effects on bacteria from experiments in oversimplified conditions. In the present work, effect of tannins preparations, currently considered as possible technological adjuvants, was assessed on growth and malolactic fermentation for two malolactic starters. Experiments were conducted in a laboratory medium and in a white wine. Likewise, impact of total polyphenolic extracts obtained from different grape variety red wines was evaluated in the white wine as culture medium. As expected growth and activity of both strains were affected whatever the additions. Results suggest some interpretations to the observed impacts on bacterial populations. Influence of tannins should be, at least partly, due to redox potential change. Results on wine extracts show the need for investigating the bacterial metabolism of some galloylated molecules. Indeed, they should play on bacterial physiology and probably affect the sensory qualities of wines.


Assuntos
Oenococcus/metabolismo , Fenóis/metabolismo , Taninos/metabolismo , Vitis/microbiologia , Vinho/microbiologia , Fermentação , Vinho/análise
2.
Food Microbiol ; 42: 188-95, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24929736

RESUMO

Although many yeasts are useful for food production and beverage, some species may cause spoilage with important economic loss. This is the case of Dekkera/Brettanomyces bruxellensis, a contaminant species that is mainly associated with fermented beverages (wine, beer, cider and traditional drinks). To better control Brettanomyces spoilage, rapid and reliable genotyping methods are necessary to determine the origins of the spoilage, to assess the effectiveness of preventive treatments and to develop new control strategies. Despite several previously published typing methods, ranging from classical molecular methods (RAPD, AFLP, REA-PFGE, mtDNA restriction analysis) to more engineered technologies (infrared spectroscopy), there is still a lack of a rapid, reliable and universal genotyping approach. In this work, we developed eight polymorphic microsatellites markers for the Brettanomyces/Dekkera bruxellensis species. Microsatellite typing was applied to the genetic analysis of wine and beer isolates from Europe, Australia and South Africa. Our results suggest that B. bruxellensis is a highly disseminated species, with some strains isolated from different continents being closely related at the genetic level. We also focused on strains isolated from two Bordeaux wineries on different substrates (grapes, red wines) and for different vintages (over half a century). We showed that all B. bruxellensis strains within a cellar are strongly related at the genetic level, suggesting that one clonal population may cause spoilage over decades. The microsatellite tool now paves the way for future population genetics research of the B. bruxellensis species.


Assuntos
Brettanomyces/genética , Brettanomyces/isolamento & purificação , Repetições de Microssatélites , Técnicas de Tipagem Micológica/métodos , Bebidas Alcoólicas , Brettanomyces/classificação , Contaminação de Alimentos/análise , Genótipo
3.
Food Microbiol ; 38: 80-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24290630

RESUMO

Oenococcus oeni is responsible for the malolactic fermentation of wine. Genomic diversity has already been established in this species. In addition, winemakers usually report varying starter-culture efficiency. It is essential to monitor indigenous and selected strains in order to understand strain survival and development during the winemaking process. A previous article described a variable number of tandem repeats (VNTR) scheme, based on five polymorphic loci of the genome. VNTR typing of O. oeni was highly discriminating, faster, and more reliable than the PFGE or MLST methods. The objective of this study was to set up a faster protocol by multiplexing, taking advantage of the high performance of multicolor capillary electrophoresis. The primers were labeled with multiple fluorescent dyes. PCR conditions were adapted by multiplexing amplifications in two separate PCR mixtures for the five loci, both at the same annealing temperature. The resulting assay proved to be robust, accurate, fast and easy to perform. Thanks to this new protocol, all O. oeni strains used in the study were typed using the five tandem repeats (TR). As expected, the primers for the five TR loci were specific to O. oeni. The method was improved to analyze isolated and mixed colonies, as well as bacteria harvested from wine using fast technology for analysis of nucleic acids (FTA(®)) technology. Finally, predictive models were constructed, to predict phylogenetic relationships and associate bacterial strain resistance to freeze-drying with fragment length analysis (FLA) profiles and genotypic and phenotypic characters.


Assuntos
Repetições Minissatélites , Tipagem de Sequências Multilocus/métodos , Oenococcus/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Primers do DNA/genética , DNA Bacteriano/genética , Dados de Sequência Molecular , Oenococcus/classificação , Oenococcus/genética , Filogenia , Vinho/microbiologia
4.
Food Microbiol ; 36(2): 267-74, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24010607

RESUMO

Molecular techniques have been applied to study the evolution of wine-associated lactic acid bacteria from red wines produced in the absence and presence of antimicrobial phenolic extracts, eucalyptus leaves and almond skins, and to genetically characterize representative Oenococcus oeni strains. Monitoring microbial populations by PCR-DGGE targeting the rpoB gene revealed that O. oeni was, as expected, the species responsible for malolactic fermentation (MLF). Representative strains from both extract-treated and not-treated wines were isolated and all were identified as O. oeni species, by 16S rRNA sequencing. Typing of isolated O. oeni strains based on the mutation of the rpoB gene suggested a more favorable adaptation of L strains (n = 63) than H strains (n = 3) to MLF. Moreover, PFGE analysis of the isolated O. oeni strains revealed 27 different genetic profiles, which indicates a rich biodiversity of indigenous O. oeni species in the winery. Finally, a higher number of genetic markers were shown in the genome of strains from control wines than strains from wines elaborated with phenolic extracts. These results provide a basis for further investigation of the molecular and evolutionary mechanisms leading to the prevalence of O. oeni in wines treated with polyphenols as inhibitor compounds.


Assuntos
Antibacterianos/farmacologia , Eucalyptus/química , Variação Genética , Oenococcus/efeitos dos fármacos , Oenococcus/genética , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Prunus/química , Vinho/microbiologia , Proteínas de Bactérias/genética , Variação Genética/efeitos dos fármacos , Oenococcus/isolamento & purificação , Vinho/análise
5.
Appl Environ Microbiol ; 79(11): 3371-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23524676

RESUMO

Oenococcus oeni, the lactic acid bacterium primarily responsible for malolactic fermentation in wine, is able to grow on a large variety of carbohydrates, but the pathways by which substrates are transported and phosphorylated in this species have been poorly studied. We show that the genes encoding the general phosphotransferase proteins, enzyme I (EI) and histidine protein (HPr), as well as 21 permease genes (3 isolated ones and 18 clustered into 6 distinct loci), are highly conserved among the strains studied and may form part of the O. oeni core genome. Additional permease genes differentiate the strains and may have been acquired or lost by horizontal gene transfer events. The core pts genes are expressed, and permease gene expression is modulated by the nature of the bacterial growth substrate. Decryptified O. oeni cells are able to phosphorylate glucose, cellobiose, trehalose, and mannose at the expense of phosphoenolpyruvate. These substrates are present at low concentrations in wine at the end of alcoholic fermentation. The phosphotransferase system (PTS) may contribute to the perfect adaptation of O. oeni to its singular ecological niche.


Assuntos
Adaptação Biológica/genética , Proteínas de Bactérias/genética , Genoma Bacteriano/genética , Proteínas de Membrana Transportadoras/genética , Oenococcus/enzimologia , Fosfotransferases/genética , Vinho/microbiologia , Análise de Variância , Sequência de Bases , Dados de Sequência Molecular , Oenococcus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
6.
PLoS One ; 7(11): e49082, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23139835

RESUMO

Plasmids in lactic acid bacteria occasionally confer adaptive advantages improving the growth and behaviour of their host cells. They are often associated to starter cultures used in the food industry and could be a signature of their superiority. Oenococcus oeni is the main lactic acid bacteria species encountered in wine. It performs the malolactic fermentation that occurs in most wines after alcoholic fermentation and contributes to their quality and stability. Industrial O. oeni starters may be used to better control malolactic fermentation. Starters are selected empirically by virtue of their fermentation kinetics and capacity to survive in wine. This study was initiated with the aim to determine whether O. oeni contains plasmids of technological interest. Screening of 11 starters and 33 laboratory strains revealed two closely related plasmids, named pOENI-1 (18.3-kb) and pOENI-1v2 (21.9-kb). Sequence analyses indicate that they use the theta mode of replication, carry genes of maintenance and replication and two genes possibly involved in wine adaptation encoding a predicted sulphite exporter (tauE) and a NADH:flavin oxidoreductase of the old yellow enzyme family (oye). Interestingly, pOENI-1 and pOENI-1v2 were detected only in four strains, but this included three industrial starters. PCR screenings also revealed that tauE is present in six of the 11 starters, being probably inserted in the chromosome of some strains. Microvinification assays performed using strains with and without plasmids did not disclose significant differences of survival in wine or fermentation kinetics. However, analyses of 95 wines at different phases of winemaking showed that strains carrying the plasmids or the genes tauE and oye were predominant during spontaneous malolactic fermentation. Taken together, the results revealed a family of related plasmids associated with industrial starters and indigenous strains performing spontaneous malolactic fermentation that possibly contribute to the technological performance of strains in wine.


Assuntos
Fermentação/fisiologia , Ácido Láctico/metabolismo , Malatos/metabolismo , Oenococcus/genética , Oenococcus/fisiologia , Plasmídeos/genética , Vinho/microbiologia , Proteínas de Bactérias/metabolismo , Dosagem de Genes/genética , Genes Bacterianos/genética , Cinética , Dados de Sequência Molecular , Oenococcus/citologia , Oenococcus/crescimento & desenvolvimento , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase
7.
Int J Food Microbiol ; 158(2): 93-100, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22809638

RESUMO

Wine grapes are a primary source of microbial communities that play a prominent role in the quality of grapes prior to harvesting, as well as in the winemaking process. This study investigated the dynamics and diversity of the epiphytic bacteria on the grape berry surface during maturation. The quantitative and qualitative effects of conventional and organic farming systems on this microbial community were investigated, using both cultivation-dependent and independent approaches. Analyses of grape berry bacterial microbiota revealed changes in the size and structure of the population during the berry ripening process, with levels rising gradually and reaching their highest value when the berries were over ripe. As the season progressed to maturity, Gram-negative bacterial communities (mostly Pseudomonas spp.) declined whereas Gram-positive communities (mostly Micrococcus spp.) increased. The 16S rRNA gene sequences of cultured isolates were analysed and over 44 species were identified from 21 genera in the Proteobacteria, Actinobacteria, and Firmicutes phyla. Copper concentrations originating from phytosanitary treatments varied according to the vineyard and farming system. A negative correlation between copper concentrations and cell densities provided clear evidence that copper inhibited bacterial communities. The bacterial community structure was analysed by targeting the 16S rRNA genes, using PCR-DGGE on cultivable populations and T-RFLP on whole communities in cell suspension. The results suggest that the farming system has a clear impact on the bacterial community structure.


Assuntos
Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Vitis/microbiologia , Actinobacteria/genética , Agricultura , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Eletroforese em Gel de Gradiente Desnaturante , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/isolamento & purificação , Metagenoma , Proteobactérias/genética , RNA Ribossômico 16S/genética
8.
Food Microbiol ; 30(2): 340-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22365346

RESUMO

Oenococcus oeni is responsible for the malolactic fermentation of wine. Genomic diversity has already been established in this species. In addition, winemakers usually report varying starter culture efficiency. The monitoring of indigenous and selected strains is essential for understanding strain survival and implantation during the winemaking process. In this study, we report the development of the first typing scheme for O. oeni using multiple-locus variable number of tandem repeat analysis (VNTR). The discriminatory power of 14 out of 44 tandem repeat loci in the genome of the PSU-1 strain was initially evaluated with a test collection of 18 genotypically distinct starter strains. Then five VNTR loci, which can be easily scored with the technology used here, were identified and used to genotype a collection of 236 strains, previously classified by restriction endonuclease analysis-pulsed-field gel electrophoresis (REA-PFGE) and multilocus sequence typing (MLST) into 136 REA-PFGE types or 110 MLST types. The discriminatory power of VNTR (as determined by Simpson's index of discrimination) was higher than that of the other two methods, with 201 VNTR types. The targeted VNTR markers were found to be stable and did not change for the clones of the same strain deposited in a collection at intervals of several years. Strains isolated from the different wine producing areas or the products were assigned to phylogenetic groups and were statistically linked with the VNTR profiles. Another interesting observation was that the loci were found in sequences homologous to regions encoding for membrane-anchored proteins.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Repetições Minissatélites , Oenococcus/genética , Sequência de Aminoácidos , Eletroforese em Gel de Campo Pulsado , Genótipo , Dados de Sequência Molecular , Oenococcus/classificação
9.
Appl Environ Microbiol ; 78(6): 1953-61, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22247134

RESUMO

Biogenic amines are low-molecular-weight organic bases whose presence in food can result in health problems. The biosynthesis of biogenic amines in fermented foods mostly proceeds through amino acid decarboxylation carried out by lactic acid bacteria (LAB), but not all systems leading to biogenic amine production by LAB have been thoroughly characterized. Here, putative ornithine decarboxylation pathways consisting of a putative ornithine decarboxylase and an amino acid transporter were identified in LAB by strain collection screening and database searches. The decarboxylases were produced in heterologous hosts and purified and characterized in vitro, whereas transporters were heterologously expressed in Lactococcus lactis and functionally characterized in vivo. Amino acid decarboxylation by whole cells of the original hosts was determined as well. We concluded that two distinct types of ornithine decarboxylation systems exist in LAB. One is composed of an ornithine decarboxylase coupled to an ornithine/putrescine transmembrane exchanger. Their combined activities results in the extracellular release of putrescine. This typical amino acid decarboxylation system is present in only a few LAB strains and may contribute to metabolic energy production and/or pH homeostasis. The second system is widespread among LAB. It is composed of a decarboxylase active on ornithine and l-2,4-diaminobutyric acid (DABA) and a transporter that mediates unidirectional transport of ornithine into the cytoplasm. Diamines that result from this second system are retained within the cytosol.


Assuntos
Lactobacillales/enzimologia , Lactobacillales/metabolismo , Ornitina/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Descarboxilação , Cinética , Lactobacillales/genética , Dados de Sequência Molecular , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/isolamento & purificação , Ornitina Descarboxilase/metabolismo , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
10.
Int J Food Microbiol ; 151(2): 210-5, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21974981

RESUMO

Several studies have reported the beneficial influence of non-Saccharomyces yeasts and their potential applications in the wine industry, mainly in mixed-culture fermentation with S. cerevisiae. The potential impact of 15 non-Saccharomyces strains from 7 species on 4-methyl-4-sulfanylpentan-2-one (4MSP) and 3-sulfanylhexan-1-ol (3SH) release in model medium and Sauvignon Blanc must was evaluated after partial fermentation. Whereas the impact of non-Saccharomyces on 4MSP release in both media was low, some M. pulcherrima, T. delbrueckii and K. thermotolerans strains had a high capacity to release 3SH, despite their minimal fermentation activity. As previously demonstrated for Saccharomyces yeast, this contribution is strain dependant. Taking into account their dynamic and quantitative presence during the whole process, the real impact of non-Saccharomyces yeast on 4MSP and 3SH release was evaluated using a recreated community simulating the yeast ecosystem. Our results revealed a positive impact on 3SH release in Sauvignon Blanc wines by promoting non-Saccharomyces yeast activity and delaying the growth of S. cerevisiae. Some non-Saccharomyces yeast strains are capable of making a positive contribution to volatile thiol release in wines, essentially during the pre-fermentation stage in winemaking, when this microbiological sub-population is dominant.


Assuntos
Hexanóis/metabolismo , Pentanonas/metabolismo , Compostos de Sulfidrila/metabolismo , Vinho/microbiologia , Leveduras/crescimento & desenvolvimento , Fermentação , Saccharomyces/crescimento & desenvolvimento , Vitis/microbiologia
11.
Appl Environ Microbiol ; 76(23): 7754-64, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20935119

RESUMO

Among the lactic acid bacteria (LAB) present in the oenological microbial ecosystem, Oenococcus oeni, an acidophilic lactic acid bacterium, is essential during winemaking. It outclasses all other bacterial species during malolactic fermentation (MLF). Oenological performances, such as malic acid degradation rate and sensorial impact, vary significantly according to the strain. The genetic diversity of the O. oeni species was evaluated using a multilocus sequence typing (MLST) scheme. Seven housekeeping genes were sequenced for a collection of 258 strains that had been isolated all over the world (particularly Burgundy, Champagne, and Aquitaine, France, Chile, South Africa, and Italy) and in several wine types (red wines, white wines, and champagne) and cider. The allelic diversity was high, with an average of 20.7 alleles per locus, many of them being rare alleles. The collection comprised 127 sequence types, suggesting an important genotypic diversity. The neighbor-joining phylogenetic tree constructed from the concatenated sequence of the seven housekeeping genes showed two major phylogenetic groups, named A and B. One unique strain isolated from cider composed a third group, rooting the phylogenetic tree. However, all other strains isolated from cider were in group B. Eight phylogenetic subgroups were statistically differentiated and could be delineated by the analysis of only 32 mutations instead of the 600 mutations observed in the concatenated sequence of the seven housekeeping genes. Interestingly, in group A, several phylogenetic subgroups were composed mostly of strains coming from a precise geographic origin. Three subgroups were identified, composed of strains from Chile, South Africa, and eastern France.


Assuntos
Variação Genética , Oenococcus/classificação , Oenococcus/genética , Vinho/microbiologia , Chile , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , França , Genótipo , Itália , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Oenococcus/isolamento & purificação , Filogenia , Homologia de Sequência , África do Sul
12.
Int J Food Microbiol ; 140(2-3): 136-45, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20452078

RESUMO

The widely used probiotic bacteria belong to the genera Lactobacillus and Bifidobacterium and have in most cases been isolated from the human gastrointestinal tract. However, other "less conventional" bacteria, from allochthonous or extremophilic origin, sharing similar structural or functional features, may also confer specific health benefits to a host. Firstly, we explored the in vitro immuno-modulatory or immune-stimulatory activities of 25 wine lactic acid bacteria belonging to Oenococcus oeni and Pediococcus parvulus. While cytokines released by peripheral blood mononuclear cells (PBMCs) stimulated by P. parvulus strains, showed little variation, O. oeni strains induced strain-specific cytokine patterns. Some O. oeni strains were then further analyzed under various conditions for growth, dose and culture medium. In a second phase, we evaluated the oral tolerance and safety of two strains of O. oeni in mice fed a high dose of bacteria for a week. Finally, evidence was gathered on the in vivo anti-inflammatory potential of a selected O. oeni strain using an experimental 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis mouse model. Although results did not match the anti-inflammatory levels obtained with certain conventional probiotics, strain IOEB 9115 significantly lowered colonic injury and alleviated colitis symptoms. The 'natural' tolerance towards acid, ethanol, and phenolic compounds of O. oeni strains combined with a measureable immunomodulatory potential, suggest a possible use of selected strains isolated from wine as live probiotics.


Assuntos
Colite/imunologia , Colite/terapia , Imunomodulação , Oenococcus/imunologia , Probióticos/uso terapêutico , Animais , Células Cultivadas , Colite/microbiologia , Citocinas/sangue , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Oenococcus/isolamento & purificação , Pediococcus/imunologia , Pediococcus/isolamento & purificação , Probióticos/administração & dosagem , Vinho/microbiologia
13.
Int J Food Microbiol ; 139(1-2): 79-86, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20188428

RESUMO

Among Saccharomyces yeast, S. cerevisiae and S. bayanus var. uvarum are related species, sharing the same ecosystem in sympatry. The physiological and technological properties of a large collection of genetically-identified S. bayanus var. uvarum wine strains were investigated in a biometric study and their fermentation behavior was compared at 24 degrees C and 13 degrees C. The variability of the phenotypic traits was considered at both intraspecific and interspecific levels. Low ethanol tolerance at 24 degrees C and production of high levels of 2-phenylethanol and its acetate were clearly revealed as discriminative technological traits, distinguishing the S. bayanus var. uvarum strains from S. cerevisiae. Although some S. bayanus var. uvarum strains produced very small amounts of acetic acid, this was not a species-specific trait, as the distribution of values was similar in both species. Fermentation kinetics at 24 degrees C showed that S. bayanus var. uvarum maintained a high fermentation rate after Vmax, with low nitrogen requirements, but stuck fermentations were observed at later stages. In contrast, a shorter lag phase compared with S.cerevisiae, higher cell viability, and the ability to complete alcoholic fermentation at 13 degrees C confirmed the low-temperature adaptation trait of S.bayanus var. uvarum. This study produced a phenotypic characterization data set for a collection of S. bayanus var. uvarum strains, thus paving the way for industrial developments using this species as a new genetic resource.


Assuntos
Fermentação , Variação Genética , Fenótipo , Saccharomyces/genética , Vinho/microbiologia , Ácido Acético/metabolismo , Adaptação Fisiológica , Temperatura Baixa , Etanol , Viabilidade Microbiana , Álcool Feniletílico/metabolismo , Saccharomyces/classificação , Saccharomyces/metabolismo
14.
Int J Food Microbiol ; 134(3): 201-10, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19619911

RESUMO

In this study, several strains of Torulaspora delbrueckii yeast species were evaluated in the laboratory for their enological properties. In a preliminary step, the ability of different molecular methods to discriminate among T.delbrueckii strains was compared. A combination of 7 PCR methods was able to separate 21 strains into 18 groups, while an REA-PFGE method allowed, in one experiment, the separation into 19 groups. The T.delbrueckii strains used presented a wide phenotypic variability in fermentation behaviour, e.g. Lag Phase (LP) duration, T50 parameter (time necessary to ferment half the sugar), and ethanol production. These 3 parameters have to be considered for industrial selection, particularly the LP duration. The majority of T.delbrueckii strains produced 8 to 11% and 7 to 10% ethanol vol. at 17 degrees C and 24 degrees C, respectively, with a maximum ethanol concentration of 12.35 at 17 degrees C and 10.90% vol. at 24 degrees C. The phenotypic variability of this species was also reflected in volatile acidity, glycerol, and aroma production. These experiments confirmed the low volatile acidity and glycerol production of this species and revealed a difference in osmotic stress response, compared to Saccharomyces cerevisiae. T.delbrueckii presented high fermentation purity and produced low levels of undesirable volatile compounds, such as hydrogen sulphide and volatile phenols.


Assuntos
Etanol/metabolismo , Filogenia , Torulaspora , Vinho/microbiologia , Eletroforese em Gel de Campo Pulsado , Fermentação , Microbiologia de Alimentos , Sulfeto de Hidrogênio/metabolismo , Odorantes/análise , Fenótipo , Reação em Cadeia da Polimerase , Temperatura , Fatores de Tempo , Torulaspora/classificação , Torulaspora/genética , Torulaspora/crescimento & desenvolvimento , Torulaspora/metabolismo , Volatilização
15.
Appl Environ Microbiol ; 75(7): 2079-90, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19218413

RESUMO

Oenococcus oeni strains are well-known for their considerable phenotypic variations in terms of tolerance to harsh wine conditions and malolactic activity. Genomic subtractive hybridization (SH) between two isolates with differing enological potentials was used to elucidate the genetic bases of this intraspecies diversity and identify novel genes involved in adaptation to wine. SH revealed 182 tester-specific fragments corresponding to 126 open reading frames (ORFs). A large proportion of the chromosome-related ORFs resembled genes involved in carbohydrate transport and metabolism, cell wall/membrane/envelope biogenesis, and replication, recombination, and repair. Six regions of genomic plasticity were identified, and their analysis suggested that both limited recombination and insertion/deletion events contributed to the vast genomic diversity observed in O. oeni. The association of selected sequences with adaptation to wine was further assessed by screening a large collection of strains using PCR. No sequences were found to be specific to highly performing (HP) strains alone. However, there was a statistically significant positive association between HP strains and the presence of eight gene sequences located on regions 2, 4, and 5. Gene expression patterns were significantly modified in HP strains, following exposure to one or more of the common stresses in wines. Regions 2 and 5 showed no traces of mobile elements and had normal GC content. In contrast, region 4 had the typical hallmarks of horizontal transfer, suggesting that the strategy of acquiring genes from other bacteria enhances the fitness of O. oeni strains.


Assuntos
Hibridização Genômica Comparativa , Variação Genética , Genoma Bacteriano , Bactérias Gram-Positivas/genética , Vinho/microbiologia , Adaptação Biológica , DNA Bacteriano/química , DNA Bacteriano/genética , Ordem dos Genes , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/fisiologia , Mutação INDEL , Dados de Sequência Molecular , Recombinação Genética , Análise de Sequência de DNA , Sintenia
16.
Appl Microbiol Biotechnol ; 83(1): 85-97, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19151972

RESUMO

Polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis was the most relevant method to follow the diversity of lactic acid bacteria during winemaking. By targeting the rpoB gene, two types of Oenococcus oeni strains were distinguished resulting from a single mutation in the rpoB region targeted in PCR and generating two different electrophoresis profiles. The first one prevailed during fermentation and the second during ageing. Some strains of each type were isolated during winemaking and were studied using several genetic methods (real-time PCR, PCR-random amplified polymorphic DNA, multiple locus sequence typing and the presence of gene markers). Physiological characters related to environmental conditions were examined. The results confirmed the relevance of the rpoB mutation for characterising the two O. oeni subgroups. The relationship between the physiological response to stress and the rpoB genetic groups raised the question of O. oeni intraspecies grouping. A possible division within this species, of great technological interest to the wine industry, was also raised.


Assuntos
Biodiversidade , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/genética , Vinho/microbiologia , Técnicas de Tipagem Bacteriana , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , Genes Bacterianos , Genótipo , Bactérias Gram-Positivas/crescimento & desenvolvimento , Bactérias Gram-Positivas/isolamento & purificação , Mutação Puntual , Reação em Cadeia da Polimerase , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA
17.
Appl Environ Microbiol ; 75(5): 1291-300, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19114515

RESUMO

Oenococcus oeni is the acidophilic lactic acid bacterial species most frequently associated with malolactic fermentation of wine. Since the description of the species (formerly Leuconostoc oenos), characterization of indigenous strains and industrially produced cultures by diverse typing methods has led to divergent conclusions concerning the genetic diversity of strains. In the present study, a multilocus sequence typing (MLST) scheme based on the analysis of eight housekeeping genes was developed and tested on a collection of 43 strains of diverse origins. The eight targeted loci were successfully amplified and sequenced for all isolates. Only three to 11 different alleles were detected for these genes. The average nucleotide diversity also was rather limited (0.0011 to 0.0370). Despite this limited allelic diversity, the combination of alleles of each strain disclosed 34 different sequence types, which denoted a significant genotypic diversity. A phylogenetic analysis of the concatenated sequences showed that all strains form two well distinct groups of 28 and 15 strains. Interestingly, the same groups were defined by pulsed-field gel electrophoresis, although this method targets different genetic variations. A minimum spanning tree analysis disclosed very few and small clonal complexes. In agreement, statistical analyses of MLST data suggest that recombination events were important during O. oeni evolution and contributed to the wide dissemination of alleles among strains. Taken together, our results showed that MLST is more efficient than pulsed-field gel electrophoresis for typing O. oeni strains, and they provided a picture of the O. oeni population that explains some conflicting results previously obtained.


Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Variação Genética , Leuconostoc/classificação , Recombinação Genética , Análise de Sequência de DNA , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/química , Eletroforese em Gel de Campo Pulsado , Genótipo , Leuconostoc/genética , Dados de Sequência Molecular , Filogenia
18.
Int J Food Microbiol ; 125(2): 197-203, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18495281

RESUMO

This detailed study observed the yeasts present in the ecological niche of "wine must". The dynamics and identity of non-Saccharomyces yeasts during the cold maceration and alcoholic fermentation of grape must were investigated under real production conditions in the Bordeaux region. Furthermore, we studied the impact of two oenological parameters on the development and diversity of non-Saccharomyces yeasts during cold maceration: temperature management and the timing of dried yeast addition. The non-Saccharomyces community underwent constant changes throughout cold maceration and alcoholic fermentation. The highly diverse non-Saccharomyces microflora was present at 10(4)-10(5) CFU/mL during cold maceration. The population increased to a maximum of 10(6)-10(7) CFU/mL at the beginning of alcoholic fermentation, then declined again at the end. The population at this point, evaluated at around 10(3)-10(4) CFU/mL, was shown to be dependent on the timing of yeast inoculation. The choice of temperature was the key factor for controlling the total yeast population growth, as well as the species present at the end of cold maceration. Hanseniaspora uvarum was a major species present in 2005 and 2006, while Candida zemplinina was very abundant in 2006. A total of 19 species were isolated.


Assuntos
Manipulação de Alimentos/métodos , Microbiologia Industrial , Polimorfismo de Fragmento de Restrição , Vinho/microbiologia , Leveduras/classificação , Leveduras/crescimento & desenvolvimento , Contagem de Colônia Microbiana , DNA Fúngico/química , DNA Fúngico/genética , Etanol/metabolismo , Fermentação , Cinética , Reação em Cadeia da Polimerase/métodos , Dinâmica Populacional , Crescimento Demográfico , Especificidade da Espécie , Temperatura , Fatores de Tempo , Leveduras/genética , Leveduras/isolamento & purificação
19.
Appl Environ Microbiol ; 74(13): 4079-90, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18469121

RESUMO

"Ropiness" is a bacterial alteration in wines, beers, and ciders, caused by beta-glucan-synthesizing pediococci. A single glucosyltransferase, Gtf, controls ropy polysaccharide synthesis. In this study, we show that the corresponding gtf gene is also present on the chromosomes of several strains of Oenococcus oeni isolated from nonropy wines. gtf is surrounded by mobile elements that may be implicated in its integration into the chromosome of O. oeni. gtf is expressed in all the gtf(+) strains, and beta-glucan is detected in the majority of these strains. Part of this beta-glucan accumulates around the cells forming a capsule, while the other part is liberated into the medium together with heteropolysaccharides. Most of the time, this polymer excretion does not lead to ropiness in a model medium. In addition, we show that wild or recombinant bacterial strains harboring a functional gtf gene (gtf(+)) are more resistant to several stresses occurring in wine (alcohol, pH, and SO(2)) and exhibit increased adhesion capacities compared to their gtf mutant variants.


Assuntos
Glucosiltransferases/genética , Cocos Gram-Positivos/enzimologia , Pediococcus/enzimologia , Aderência Bacteriana , Glucosiltransferases/metabolismo , Cocos Gram-Positivos/genética , Resposta ao Choque Térmico , Microbiologia Industrial , Dados de Sequência Molecular , Mutação , Pediococcus/genética , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Vinho/microbiologia , beta-Glucanas/metabolismo
20.
J Ind Microbiol Biotechnol ; 35(1): 27-33, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17943334

RESUMO

This study reports on monitoring Oenococcus oeni intraspecific diversity evolution during winemaking. Three different wines were monitored. The proportion of O. oeni species was determined by species-specific PCR and O. oeni strains were distinguished by multiplex PCR-RAPD. Each strain was tested by PCR for 16 significant markers revealed by a previous genetic comparison between a strong oenological potential strain and one with poor oenological potential. Population levels and diversity changed according to winemaking stages, oenological practices and the chemical properties of the wine. In all situations, O. oeni was the best-adapted species. Within the O. oeni group, intraspecific strain diversity decreased and the malolactic fermentation was the result of the most resistant strains with the highest number of markers.


Assuntos
Marcadores Genéticos/genética , Cocos Gram-Positivos/classificação , Cocos Gram-Positivos/crescimento & desenvolvimento , Vinho/microbiologia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Fermentação , Cocos Gram-Positivos/genética , Cocos Gram-Positivos/isolamento & purificação , Microbiologia Industrial , Malatos/metabolismo , Reação em Cadeia da Polimerase , Dinâmica Populacional , Técnica de Amplificação ao Acaso de DNA Polimórfico , Especificidade da Espécie , Vitis/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...