Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 291(23): 12254-70, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27129281

RESUMO

Purinergic homomeric P2X3 and heteromeric P2X2/3 receptors are ligand-gated cation channels activated by ATP. Both receptors are predominantly expressed in nociceptive sensory neurons, and an increase in extracellular ATP concentration under pathological conditions, such as tissue damage or visceral distension, induces channel opening, membrane depolarization, and initiation of pain signaling. Hence, these receptors are considered important therapeutic targets for pain management, and development of selective antagonists is currently progressing. To advance the search for novel analgesics, we have generated a panel of monoclonal antibodies directed against human P2X3 (hP2X3). We have found that these antibodies produce distinct functional effects, depending on the homomeric or heteromeric composition of the target, its kinetic state, and the duration of antibody exposure. The most potent antibody, 12D4, showed an estimated IC50 of 16 nm on hP2X3 after short term exposure (up to 18 min), binding to the inactivated state of the channel to inhibit activity. By contrast, with the same short term application, 12D4 potentiated the slow inactivating current mediated by the heteromeric hP2X2/3 channel. Extending the duration of exposure to ∼20 h resulted in a profound inhibition of both homomeric hP2X3 and heteromeric hP2X2/3 receptors, an effect mediated by efficient antibody-induced internalization of the channel from the plasma membrane. The therapeutic potential of mAb12D4 was assessed in the formalin, complete Freund's adjuvant, and visceral pain models. The efficacy of 12D4 in the visceral hypersensitivity model indicates that antibodies against P2X3 may have therapeutic potential in visceral pain indications.


Assuntos
Anticorpos Monoclonais/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X2/imunologia , Receptores Purinérgicos P2X3/imunologia , Animais , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Adjuvante de Freund , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/prevenção & controle , Canais Iônicos/química , Canais Iônicos/metabolismo , Canais Iônicos/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos BALB C , Microscopia Confocal , Dor/induzido quimicamente , Dor/metabolismo , Dor/prevenção & controle , Multimerização Proteica/imunologia , Ratos , Receptores Purinérgicos P2X2/química , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X3/química , Receptores Purinérgicos P2X3/metabolismo , Ácido Trinitrobenzenossulfônico , Dor Visceral/induzido quimicamente , Dor Visceral/metabolismo , Dor Visceral/prevenção & controle
2.
Bioconjug Chem ; 26(4): 650-9, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25643134

RESUMO

The systemic stability of the antibody-drug linker is crucial for delivery of an intact antibody-drug conjugate (ADC) to target-expressing tumors. Linkers stable in circulation but readily processed in the target cell are necessary for both safety and potency of the delivered conjugate. Here, we report a range of stabilities for an auristatin-based payload site-specifically attached through a cleavable valine-citrulline-p-aminobenzylcarbamate (VC-PABC) linker across various sites on an antibody. We demonstrate that the conjugation site plays an important role in determining VC-PABC linker stability in mouse plasma, and that the stability of the linker positively correlates with ADC cytotoxic potency both in vitro and in vivo. Furthermore, we show that the VC-PABC cleavage in mouse plasma is not mediated by Cathepsin B, the protease thought to be primarily responsible for linker processing in the lysosomal degradation pathway. Although the VC-PABC cleavage is not detected in primate plasma in vitro, linker stabilization in the mouse is an essential prerequisite for designing successful efficacy and safety studies in rodents during preclinical stages of ADC programs. The divergence of linker metabolism in mouse plasma and its intracellular cleavage offers an opportunity for linker optimization in the circulation without compromising its efficient payload release in the target cell.


Assuntos
Aminobenzoatos/química , Anticorpos Monoclonais/química , Antineoplásicos/química , Imunoconjugados/química , Oligopeptídeos/química , Neoplasias Pancreáticas/tratamento farmacológico , Aminobenzoatos/sangue , Aminobenzoatos/farmacocinética , Aminobenzoatos/farmacologia , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Carbamatos/química , Catepsina B/química , Catepsina B/metabolismo , Linhagem Celular Tumoral , Dipeptídeos/química , Sistemas de Liberação de Medicamentos/métodos , Estabilidade de Medicamentos , Feminino , Humanos , Imunoconjugados/sangue , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Camundongos , Camundongos Nus , Modelos Moleculares , Oligopeptídeos/sangue , Oligopeptídeos/farmacocinética , Oligopeptídeos/farmacologia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Chem Biol ; 20(2): 161-7, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23438745

RESUMO

Antibody drug conjugates (ADCs) are a therapeutic class offering promise for cancer therapy. The attachment of cytotoxic drugs to antibodies can result in an effective therapy with better safety potential than nontargeted cytotoxics. To understand the role of conjugation site, we developed an enzymatic method for site-specific antibody drug conjugation using microbial transglutaminase. This allowed us to attach diverse compounds at multiple positions and investigate how the site influences stability, toxicity, and efficacy. We show that the conjugation site has significant impact on ADC stability and pharmacokinetics in a species-dependent manner. These differences can be directly attributed to the position of the linkage rather than the chemical instability, as was observed with a maleimide linkage. With this method, it is possible to produce homogeneous ADCs and tune their properties to maximize the therapeutic window.


Assuntos
Anticorpos/química , Antineoplásicos/química , Imunoconjugados/química , Animais , Anticorpos/imunologia , Meia-Vida , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/imunologia , Camundongos , Neoplasias/tratamento farmacológico , Ratos , Transglutaminases/metabolismo , Moduladores de Tubulina/química
4.
Endocrinology ; 149(3): 1038-48, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18063676

RESUMO

Mutations in the tyrosine kinase receptor trkB or in one of its natural ligands, brain-derived neurotrophic factor (BDNF), lead to severe hyperphagia and obesity in rodents and/or humans. Here, we show that peripheral administration of neurotrophin-4 (NT4), the second natural ligand for trkB, suppresses appetite and body weight in a dose-dependent manner in several murine models of obesity. NT4 treatment increased lipolysis, reduced body fat content and leptin, and elicited long-lasting amelioration of hypertriglyceridemia and hyperglycemia. After treatment termination, body weight gradually recovered to control levels in obese mice with functional leptin receptor. A single intrahypothalamic application of minute amounts of NT4 or an agonist trkB antibody also reduced food intake and body weight in mice. Taken together with the genetic evidence, our findings support the concept that trkB signaling, which originates in the hypothalamus, directly modulates appetite, metabolism, and taste preference downstream of the leptin and melanocortin 4 receptor. The trkB agonists mediate anorexic and weight-reducing effects independent of stress induction, visceral discomfort, or pain sensitization and thus emerge as a potential therapeutic for metabolic disorders.


Assuntos
Fatores de Crescimento Neural/farmacologia , Obesidade/metabolismo , Receptor trkB/agonistas , Animais , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Leptina/metabolismo , Cloreto de Lítio/farmacologia , Masculino , Melanocortinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Ratos , Ratos Sprague-Dawley , Receptor trkB/metabolismo , Receptores para Leptina/metabolismo , Paladar/efeitos dos fármacos , Triglicerídeos/metabolismo
5.
Pain ; 82(2): 199-205, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10467924

RESUMO

Cannabinoid receptor (CB1) agonists strongly inhibit behavioral responses to acute noxious stimuli, but their effects on behavioral responses in persistent pain states are less clear. Here, we examined the effects of intrathecal (i.t.) administration of a CB1 agonist, WIN55,212-2, on mechanical allodynia (decreased withdrawal threshold) produced by injections of complete Freund's adjuvant (CFA) in the plantar surface of the rat hindpaw. We measured mechanical thresholds with calibrated von Frey filaments before and after CFA and used Fos expression as a marker of the activity of spinal cord neurons during inflammation and in response to a CB1 antagonist. One day post CFA-induced injury, mechanical sensitivity was significantly increased in the hindpaw ipsilateral to the CFA injection, as was the number of neurons that express Fos. Intrathecal injection of WIN55,212-2, significantly, reversed the allodynia at doses that had no effect on the mechanical threshold of the contralateral paw of CFA-treated or the withdrawal thresholds in naive animals. This effect was blocked by coadministration of the CB1 antagonist, SR141716A, with WIN55212-2. By itself, SR141716A, had no effect on mechanical thresholds in normal animals. In inflamed animals, SR141716A did not further reduce mechanical thresholds in the inflamed paw, but it significantly enhanced mechanical sensitivity 'contralateral' to the inflammation. Furthermore, i.t. injection of SR141716A increased Fos expression in both normal and inflamed animals, to a different extent in different laminae. In normal animals, the increase was primarily in laminae V-VI and in the ventral horn; in animals with persistent inflammation SR141716A increased the number of Fos neurons in laminae I-II and V-VI. These results demonstrate that WIN55212-2 reverses inflammation-induced allodynia at doses that do not produce analgesia and that SR141716A differentially affects the pattern of Fos expression in the spinal cord, depending on the presence or absence of inflammation. Taken together, these results suggest that the CB1 receptor system is tonically active in the spinal cord under normal conditions and that its activity is increased in response to injury.


Assuntos
Analgésicos/uso terapêutico , Canabinoides/uso terapêutico , Neurite (Inflamação)/tratamento farmacológico , Limiar da Dor/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Benzoxazinas , Canabinoides/agonistas , Canabinoides/antagonistas & inibidores , Imuno-Histoquímica , Injeções Espinhais , Masculino , Morfolinas/uso terapêutico , Naftalenos/uso terapêutico , Proteínas do Tecido Nervoso/biossíntese , Piperidinas/uso terapêutico , Proteínas Proto-Oncogênicas c-fos/biossíntese , Pirazóis/uso terapêutico , Ratos , Ratos Sprague-Dawley , Rimonabanto , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...