Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 57(1): 65-78, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17269232

RESUMO

This paper presents the design and performance of a compact dilution sampler (CDS) for characterizing fine particle emissions from stationary sources. The sampler is described, along with the methodology adopted for its use. Dilution sampling has a number of advantages, including source emissions that are measured under conditions simulating stack gas entry and mixing in the ambient atmosphere. This is particularly important for characterizing the semivolatile species in effluents as a part of particulate emissions. The CDS characteristics and performance are given, along with sampling methodology. The CDS was compared with a reference dilution sampler. The results indicate that the two designs are comparable for tests on gas-fired units and a diesel electrical generator. The performance data indicate that lower detection limits can be achieved relative to current regulatory methods for particulate emissions. Test data for the fine particulate matter (PM2.5) emissions are provided for comparison with U.S. Environment Protection Agency (EPA) Conditional Test Method 040 for filterable particulate matter (FPM) and the EPA Method 202 for condensable particulate matter. This comparison showed important differences between methods, depending on whether a comparison is done between in situ FPM determinations or the sum of such values with condensable PM from liquid filled impingers chilled in an ice bath. These differences are interpretable in the light of semivolatile material present in the stack effluent and, in some cases, differences in detection and quantification limits. Determination of emissions from combustors using liquid fuels can be readily achieved using 1-hr sampling with the CDS. Emissions from gasfired combustors are very low, requiring careful attention to sample volumes. Sampling volumes corresponding with 6-hr operation were used for the combined mass and broad chemical speciation. Particular attention to dilution sampler operation with clean dilution air also is essential for gas-fired sources.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Resíduos Industriais/análise , Oxigênio/análise , Transdutores
2.
J Air Waste Manag Assoc ; 57(1): 79-93, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17269233

RESUMO

With the recent focus on fine particle matter (PM2.5), new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference. The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2 nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of approximately 10(-4) lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with approximately 5 x 10(-3) lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of approximately 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing "true" particulate carbon emission results.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Combustíveis Fósseis , Óleos Combustíveis , Resíduos Industriais/análise , Gasolina
3.
Environ Sci Technol ; 38(15): 4200-5, 2004 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15352461

RESUMO

A sampling and analytical method for measuring ethylene oxide (EO) in ambient air was developed and evaluated. The method is based on the use of evacuated canisters and gas chromatography-mass spectrometry (GC-MS). The objectives of this work were to characterize the performance of the method with respect to the following: (1) stability/recovery of ethylene oxide in a canister over a 15-day holding time; (2) detection capability; and (3) measurement of EO in an ambient air matrix. Both electropolished and silica-lined stainless steel canisters were evaluated in this study. The method evaluation involved both laboratory and field tests. The recovery of the EO was evaluated both on an absolute basis and relative to a spiked internal standard of toluene. EO spiked at levels of 2 ppbv and 20 ppbv was found to be stable for holding times of up to 15 days at 25 degrees C in both a humidified nitrogen matrix and in ambient air. The detection limit of the method was found to be 0.25 ppbv using EPA's traditional approach of seven replicate analyses of a low-level standard and 0.20 ppbv using a probability-based approach. EO recoveries in the laboratory stability study generally were 100 +/- 25%, and did not vary by canister type, nor did the EO recoveries decrease with holding time. Field studies demonstrated that the method is capable of detecting EO (as well as benzene and toluene) in an ambient air matrix.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Óxido de Etileno/análise , Monitoramento Ambiental/instrumentação , Cromatografia Gasosa-Espectrometria de Massas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...