Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(3): 798-815, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298600

RESUMO

The dissolution of a nanomaterial (NM) in an in vitro simulant of the oro-gastrointestinal (OGI) tract is an important predictor of its biodurability in vivo. The cascade addition of simulated digestive juices (saliva, stomach and intestine), including inorganic/organic biomacromolecules and digestive enzymes (complete composition, referred to as "Type 1 formulation"), strives for realistic representation of chemical composition of the OGI tract. However, the data robustness requires consideration of analytical feasibility, such as the use of simplified media. Here we present a systematic analysis of the effects exerted by different digestive juice formulations on the dissolution% (or half-life values) of benchmark NMs (e.g., zinc oxide, titanium dioxide, barium sulfate, and silicon dioxide). The digestive juices were progressively simplified by removal of components such as organic molecules, enzymes, and inorganic molecules (Type 2, 3 and 4). The results indicate that the "Type 1 formulation" augments the dissolution via sequestration of ions by measurable factors compared to formulations without enzymes (i.e., Type 3 and 4). Type 1 formulation is thus regarded as a preferable option for predicting NM biodurability for hazard assessment. However, for grouping purposes, the relative similarity among diverse nanoforms (NFs) of a NM is decisive. Two similarity algorithms were applied, and additional case studies comprising NFs and non NFs of the same substance were included. The results support the grouping decision by simplified formulation (Type 3) as a robust method for screening and grouping purposes.

2.
Int J Cosmet Sci ; 45 Suppl 1: 67-83, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799080

RESUMO

OBJECTIVE: A 2-year sampling campaign was realized on French Mediterranean beach (Palavas-les-Flots Hérault) in order to measure the concentration of UV filters released from the sunscreen used by bathers. Multiple factors suspected of playing determining roles in the UV filter pattern in water were explored, such as the seasonal and daily time evolutions, or the vertical and horizontal distributions, and they were regarded through the UV filter characteristics. METHODS: The beach was monitored during periods of high and low tourist attendance, typically before, during and after the summer peak. The beachgoers attendance was counted. Bathing water was sampled distinctly from the bulk column and from the top surface layer, testing different sampling tools. Sediments and mussels were also sampled and analysed as potential UV filter sinks. Three organic UV filters (octocrylene OCR, avobenzone BMDBM and octyl methoxycinnamate OMC) and one mineral (titanium dioxide TiO2 ) were studied here as representatives of the current cosmetic market. RESULTS: Summer peak attendance on the beach was confirmed associated with peak levels of UV filter concentration in the bathing water, even more pronounced during a heat wave period. This relation was also observed at day scale with an afternoon peak, suggesting a rapid evolution of the UV filter pattern in water. Contrasted fates were measured between the four studied UV filters, that could be mainly explained by their respective characteristics, i.e. particulate or dissolved, hydrophilic or lipophilic, lifetime. Generally, this resulted in a concentration ranking TiO2 > OCR > OMC > BMDBM, ranging from 0.5 to 500 µg/L. The most lipophilic and recalcitrant OCR was found most vertically differentiated and over concentrated in the top surface layer of water. Finally, a large horizontal heterogeneity was also observed in the UV filter concentration pattern, raising the need for sample replicates that cover a significant area. CONCLUSION: This work fulfils some knowledge gaps on the issue of UV filter release in coastal environments, not only by providing original field data and methodological recommendations but also importantly in the comparison made of organic and mineral UV filters, which are often considered separately and rarely evaluated at the same time.


OBJECTIF: Une campagne d'échantillonnage de deux ans a eu lieu sur une plage de la Méditerranée en France (Palavas-les-Flots dans l'Hérault) afin de mesurer la concentration de filtres UV libérés par la protection solaire utilisé par les baigneurs. Plusieurs facteurs suspectés de jouer des rôles déterminants dans le modèle de filtre UV dans l'eau ont été étudiés, comme les évolutions saisonnières et quotidiennes, ou les distributions verticales et horizontales, et ils ont été examinés à travers les caractéristiques du filtre UV. MÉTHODES: La plage a été surveillée pendant les périodes de fréquentation touristique élevée et faible, généralement avant, pendant et après le pic estival. La présence des baigneurs a été comptabilisée. L'eau de baignade a été prélevée distinctement de la colonne principale et de la couche superficielle supérieure, en testant différents outils de prélèvement d'échantillons. Des sédiments et des moules ont également été prélevés et analysés comme réservoirs de filtre UV potentiels. En l'occurrence, trois filtres UV organiques (octocrylène OCR, avobenzone BMDBM et octyl méthoxycinnamate OMC) et un minéral (dioxyde de titane TiO2 ) ont été étudiés comme représentants du marché cosmétique actuel. RÉSULTATS: Les pics estivaux de présence de baigneurs sur la plage ont été confirmés comme étant associés à des pics de concentration du filtre UV dans l'eau de baignade, encore plus prononcés pendant une période de vague de chaleur. Cette relation a également été observée à l'échelle d'une journée, avec un pic l'après-midi, suggérant une évolution rapide du profil de filtre UV dans l'eau. Les effets de contraste ont été mesurés entre les quatre filtres UV étudiés, ce qui pourrait s'expliquer principalement par leurs caractéristiques respectives, c'est-à-dire particulaires ou dissous, hydrophiles ou lipophiles, tout au long de la vie. En général, cela a donné lieu à un classement de la concentration : TiO2 > OCR > OMC > BMDBM, comprise entre 0,5 et 500 ug/L. Il est apparu que c'est l'OCR le plus lipophile et le plus récalcitrant qui est le plus différencié verticalement et sur-concentré dans la couche supérieure de l'eau. Enfin, on a observé une grande hétérogénéité horizontale dans le profil de concentration du filtre UV, ce qui a nécessité des réplicats d'échantillons couvrant une zone significative. CONCLUSION: Ce travail comble certaines lacunes en matière de connaissances sur la libération des filtres UV dans les environnements côtiers, non seulement en fournissant des données originales sur le terrain et des recommandations méthodologiques, mais également en comparant des filtres UV organiques et minéraux, qui sont souvent pris en compte séparément et rarement évalués en même temps.


Assuntos
Titânio , Água , Protetores Solares , Raios Ultravioleta , Minerais
3.
NanoImpact ; 27: 100410, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35787478

RESUMO

Nanoforms (NFs) of a substance may be distinguished from one another through differences in their physicochemical properties. When registering nanoforms of a substance for assessment under the EU REACH framework, five basic descriptors are required for their identification: composition, surface chemistry, size, specific surface area and shape. To make the risk assessment of similar NFs efficient, a number of grouping frameworks have been proposed, which often require assessment of similarity on individual physicochemical properties as part of the group justification. Similarity assessment requires an understanding of the achievable accuracy of the available methods. It must be demonstrated that measured differences between NFs are greater than the achievable accuracy of the method, to have confidence that the measured differences are indeed real. To estimate the achievable accuracy of a method, we assess the reproducibility of six analytical techniques routinely used to measure these five basic descriptors of nanoforms: inductively coupled plasma mass spectrometry (ICP-MS), Thermogravimetric analysis (TGA), Electrophoretic light scattering (ELS), Brunauer-Emmett-Teller (BET) specific surface area and transmission and scanning electron microscopy (TEM and SEM). Assessment was performed on representative test materials to evaluate the reproducibility of methods on single NFs of substances. The achievable accuracy was defined as the relative standard deviation of reproducibility (RSDR) for each method. Well established methods such as ICP-MS quantification of metal impurities, BET measurements of specific surface area, TEM and SEM for size and shape and ELS for surface potential and isoelectric point, all performed well, with low RSDR, generally between 5 and 20%, with maximal fold differences usually <1.5 fold between laboratories. Applications of technologies such as TGA for measuring water content and putative organic impurities, additives or surface treatments (through loss on ignition), which have a lower technology readiness level, demonstrated poorer reproducibility, but still within 5-fold differences. The expected achievable accuracy of ICP-MS may be estimated for untested analytes using established relationships between concentration and reproducibility, but this is not yet the case for TGA measurements of loss on ignition or water content. The results here demonstrate an approach to estimate the achievable accuracy of a method that should be employed when interpreting differences between NFs on individual physicochemical properties.


Assuntos
Metais , Água , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Reprodutibilidade dos Testes
4.
NanoImpact ; 25: 100375, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35559881

RESUMO

Before placing a new nanoform (NF) on the market, its potential adverse effects must be evaluated. This may e.g. be done via hazard and risk assessment. Grouping and read-across of NFs is a possible strategy to reduce resource consumption, maximising the use of existing data for assessment of NFs. The GRACIOUS project provides a framework in which possible grouping and read-across for NFs is mainly based on an evaluation of their similarity. The impact of NFs on human health and the environment depends strongly on the concentration of the NF and its physicochemical properties, such as chemical composition, size distribution, shape, etc. Hence, knowledge of the most relevant physicochemical properties is essential information for comparing similarity. The presented work aims to refine existing proposals for sets of descriptors (descriptor array) that are needed to describe distinct NFs of a material to identify the most relevant ones for grouping and read-across. The selection criteria for refining this descriptor array are explained and demonstrated. Relevant protocols and methods are proposed for each physicochemical property. The required and achievable measurement accuracies of the refined descriptor array are reviewed, as this information is necessary for similarity assessment of NFs based on individual physicochemical properties.


Assuntos
Nanoestruturas , Humanos , Nanoestruturas/química , Medição de Risco/métodos
5.
Colloids Surf B Biointerfaces ; 209(Pt 2): 112173, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34749192

RESUMO

Nanoparticles (NPs) can be produced via physical, chemical, or biological approaches. Yet, the impact of the synthesis approaches on the environmental fate and effects of NPs is poorly understood. Here, we synthesized AgNPs through chemical and biological approaches (cit-AgNPs and bio-AgNPs), characterized their properties, and toxicities relative to commercially available Ag nanopowder (np-AgNPs) to the clam Mercenaria mercenaria. The chemical synthesis is based on the reduction of ionic silver using sodium borohydride as a reducing agent and trisodium citrate as a capping agent. The biological synthesis is based on the reduction of ionic silver using biomolecules extracted from an atoxigenic strain of a filamentous fungus Aspergillus parasiticus. The properties of AgNPs were determined using UV-vis, dynamic light scattering, laser Doppler electrophoresis, (single particle)-inductively coupled plasma-mass spectroscopy, transmission electron microscopy, and asymmetric flow-field flow fractionation. Both chemical and biological synthesis approaches generated spherical AgNPs. The chemical synthesis produced AgNPs with narrower size distributions than those generated through biological synthesis. The polydispersity of bio-AgNPs decreased with increases in cell free extract (CFE):Ag ratios. The magnitude of the zeta potential of the cit-AgNPs was higher than those of bio-AgNPs. All AgNPs formed aggregates in the test media i.e., natural seawater. Based on the same total Ag concentrations, all AgNPs were less toxic than AgNO3. The toxicity of AgNPs toward the juvenile clam, Mercenaria mercenaria, decreased following the order np-AgNPs > cit-AgNPs > bio-AgNPs. Expressed as a function of dissolved Ag concentrations, the toxicity of Ag decreased following the order cit-AgNPs > bio-AgNPs > AgNO3 ~ np-AgNPs. Therefore, the toxicity of AgNP suspensions can be attributed to a combined effect of dissolved and particulate Ag forms. These results indicate that AgNP synthesis methods determine their environmental and biological behaviors and should be considered for a more comprehensive environmental risk assessment of AgNPs.


Assuntos
Bivalves , Nanopartículas Metálicas , Animais , Difusão Dinâmica da Luz , Nanopartículas Metálicas/toxicidade , Extratos Vegetais , Prata/toxicidade
6.
J Hazard Mater ; 392: 122335, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092658

RESUMO

Stormwater conveys natural and engineered (nano)-particles, like any other pollutants, from urban areas to water resources. Thus, the use of stormwater green infrastructures (SGI), which infiltrate and treat stormwater, can potentially limit the spread of engineered (nano)-particles in the environment. However, the concentration of engineered (nano)-particles in soil or biofilter media used in SGI has not been measured due to difficulties in distinguishing natural vs. engineered (nano)-particles. This study reports, for the first time, the concentration and size distribution of TiO2 engineered (nano)-particles in soils collected from SGI. The concentrations of TiO2 engineered (nano)-particles were determined by mass balance calculations based on shifts in elemental concentration ratios, i.e., Ti to Nb, Ti to Ta, and Ti to Al in SGI soils relative to natural background elemental ratios. The concentrations of TiO2 engineered (nano)-particles in SGI soils varied between 550 ± 13 and 1800 ± 200 mg kg-1. A small fraction of TiO2 engineered (nano)-particles could be extracted by ultrapure water (UPW) and Na4P2O7; however, the concentration of TiO2 engineered (nano)-particles was higher in the Na4P2O7-extracted suspensions than in UPW-extracted suspensions. The concentration of TiO2 in the nanosize range increased with the increase in extractant (Na4P2O7) volume to soil mass ratio due to the increased disaggregation of soil heteroaggregates. The size distribution of TiO2 engineered (nano)-particles in the < 450 nm Na4P2O7-extracted suspension from one of the SGI soils was determined by asymmetrical flow-field flow fractionation coupled to inductively coupled plasma-mass spectrometer, and was found to vary in the range of 25-200 nm with a modal size of 50 nm. These results demonstrated that the increase in the Ti to natural tracers (e.g., Nb, Ta, and Al) elemental ratios in the SGI soil relative to bulk soil can be used to estimate the concentration of TiO2 engineered (nano)-particles in SGI.

7.
Sci Total Environ ; 715: 136927, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007892

RESUMO

Quantification of engineered nanomaterials (ENMs) concentrations in surface waters remains one of the key challenges in environmental nanoscience and nanotechnology. A promising approach to estimate metal and metal oxide ENM concentrations in complex environmental samples is based on the increase in the elemental ratios of ENM-contaminated samples relative to the corresponding natural background elemental ratios. This contribution evaluated the detection and quantification of Ag, CeO2, and Fe2O3 ENMs spiked in synthetic soft, or in natural river waters using the elemental ratio approach, and evaluated the effect of extractants including sodium hydroxide (NaOH), sodium oxalate (Na2C2O4) and sodium pyrophosphate (Na4P2O7) on the recovery of ENMs from the spiked waters. The extracted ENM concentrations were higher in Na4P2O7-extracted suspensions than in NaOH- and Na2C2O4-extracted suspensions due to the higher efficiency of Na4P2O7 to break up natural and engineered nanomaterial heteroaggregates. The size distributions of the extracted suspensions were determined by asymmetrical flow-field flow fractionation coupled to inductively coupled plasma-mass spectrometer (AF4-ICP-MS). These size distribution analysis demonstrated that Ag ENMs were extracted from the spiked river water as both primary particles and small (<100 nm) aggregates, whereas CeO2 ENMs were extracted from the spiked river water as aggregates of particles in the size range 0-200 nm. The number particle size distribution of the extracted suspensions confirmed that Ag ENMs were extracted as a mixture of primary and aggregated Ag ENMs. Small Ag ENMs (i.e. <20 nm) were detected by AF4-ICP-MS, but these particles were not detected by single particle (sp)-ICP-MS due to high size detection limit of sp-ICP-MS. This study illustrates that the elemental ratio approach is a promising approach to detect and quantify ENMs in surface waters. This study also illustrates the need for a multi-method approach, including extraction, filtration, AF4-ICP-MS and sp-ICP-MS, to detect, quantify, and characterize ENMs in surface waters.

8.
Environ Sci Nano ; 6(3): 763-777, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853367

RESUMO

Sanitary sewer overflows (SSOs) are a common problem across the United States. An estimated 23,000-75,000 SSOs occurred annually in 2004 discharging between 11 and 38 billion liters of untreated wastewater to receiving waters. SSOs release many contaminants, including engineered nanomaterials (ENMs), to receiving water bodies. Measuring ENM concentrations in environmental samples remains a key challenge in environmental nanotechnology and requires the distinction between natural and engineered particles. This distinction between natural and engineered particles is often hampered by the similarities in the intrinsic properties of natural and engineered particles such as particle size, composition, density, surface chemistry, and by the limitations of the available nanometrology tools. To overcome these challenges, we applied a multi-method approach to measure the concentrations and properties of TiO2 engineered particles (e.g., ENMs and pigments) including 1) multi-element single particle-inductively coupled plasma-mass spectrometry (ME-SP-ICP-MS) to identify elemental associations and to determine elemental ratios in natural particles, 2) total elemental concentrations and ratios calculated from total metal concentrations measured following total sample digestion to estimate engineered particle concentrations, and 3) transmission electron microscopy (TEM) to characterize engineered particle size and morphology. ME-SP-ICP-MS analysis revealed that natural TiO2 particles are often associated with at least one of the following elements Al, Fe, Ce, Si, La, Zr, Nb, Pb, Ba, Th, Ta, W and U, and that elemental ratios of Ti to these elements is typical of riverine particulates and the average crustal ratios, except for Pb likely due to anthropogenic Pb contamination. High TiO2 engineered particle concentrations up to 100 µg L-1 were found in SSOs-impacted surface waters. TEM analysis demonstrated the presence of regular-shape TiO2 particles in SSOs-impacted surface waters. This study provides a comprehensive approach for measuring TiO2 engineered particle concentrations in surface waters. The quantitative data produced in this work can be used as input for modeling studies and pave the road toward routine monitoring of ENMs in environmental systems, validation of ENM fate models, and more accurate ENM exposure and risk assessment.

9.
Sci Total Environ ; 677: 34-46, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31051381

RESUMO

Characterization of natural nanomaterial (NNM) physicochemical properties - such as size, size distribution, elemental composition and elemental ratios - is often hindered by lack of methods to disperse NNMs from environmental samples. This study evaluates the effect of extractant composition, pH, and ionic strength on soil NNM extraction in term of recovery and release of primary particles/small aggregate sizes (i.e., <200 nm). The extracted NNMs were characterized for hydrodynamic diameter and zeta potential by dynamic light scattering and laser Doppler electrophoresis, natural organic matter desorption by UV-Vis spectroscopy, element composition by inductively coupled plasma-mass spectroscopy (ICP-MS), size based elemental distribution by field flow fractionation coupled to ICP-MS, and morphology by transmission electron microscopy. The extracted NNM concentrations increased following the order of NaOH ≤ Na2CO3 < Na2C2O4 < Na4P2O7. Na4P2O7 was the most efficient extractant and results in 2-12 folds higher NNM extraction than other extractants. The Na4P2O7 extracted NNMs exhibited narrower size distribution with smaller modal size relative to NaOH, Na2CO3, Na2C2O4 extracted NNMs. Thus, Na4P2O7 enhances the extraction of primary NNMs and/or smaller NNM aggregates (i.e., size <200 nm). Na4P2O7 promote soil microaggregates breakup and release of NNMs by reducing free multivalent cation concentration in soil pore water by forming metal-phosphate complexes and by enhancing NNM surface charge via phosphate sorption on NNM surfaces. Additionally, the extracted NNM concentrations increased with the increase in extractant concentration and pH, except at 100 mM where the high ionic strength might have induced NNM aggregation. The improved NNM-extraction will improve the overall understanding of the physicochemical properties of NNMs in environmental systems. This study presents the key properties of NNMs that can be used as background information to differentiate engineered nanomaterials (ENMs) from NNMs in complex environmental media.

10.
Sci Total Environ ; 682: 663-672, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31129548

RESUMO

Characterization and understanding of natural nanomaterials (NNMs) properties is essential to differentiate engineered nanomaterials (ENMs) from NNMs. However, NNMs in environmental samples typically occur as heteroaggregates with other particles, e.g., NNMs, ENMs, and larger particles. Therefore, there is a need to isolate NNMs into their primary particles to better characterize their physicochemical properties. Here, we evaluated the efficiency of sodium hydroxide, sodium oxalate, and sodium pyrophosphate to extract NNMs from surface waters. The extracted NNMs were characterized for total metal concentration by inductively coupled plasma-mass spectrometry (ICP-MS) following full digestion; size distribution, elemental composition and ratios by flow-field flow fractionation (AF4)-ICP-MS; and morphology by transmission electron microscopy (TEM). Sodium pyrophosphate extraction resulted in the highest NNM concentration and the smallest NNM size distribution. Sodium hydroxide and sodium oxalate extraction generated heteroaggregates with a broad size distribution. The NNM extraction efficiency increased with extractant (sodium oxalate and sodium pyrophosphate) concentration. The concentration of metals in the sodium pyrophosphate-extracted NNMs compared to the total metal concentration was element-dependent and varied from as high as >80% for Cu, Zn, and Sr to as low as <5% for Al, Ti, and Nb. This study provides a simple protocol for NNM extraction from complex environmental samples and provides a better understanding of NNM physicochemical properties. The presented NNM extraction protocol forms the basis for ENM extraction from natural waters.

11.
Chemphyschem ; 17(24): 4134-4143, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27860189

RESUMO

Viscoelastic liquids are characterized by a finite static viscosity and a yield stress of zero, whereas soft solids have an infinite viscosity and a non-zero yield stress. The rheological nature of viscoelastic materials has long been a challenge and is still a matter of debate. Here, we provide for the first time the constitutive equations of linear viscoelasticity for magnetic wires in yield-stress materials, together with experimental measurements by using magnetic rotational spectroscopy (MRS). In MRS, the wires were subjected to a rotational magnetic field as a function of frequency and the motion of the wire was monitored by using time-lapse microscopy. The studied soft solids were aqueous dispersions of gel-forming polysaccharide (gellan gum) at concentrations above the gelification point. It was found that soft solids exhibited a clear and distinctive signature compared with viscous and viscoelastic liquids. In particular, the average wire rotation velocity equaled zero over a broad frequency range. We also showed that the MRS technique is quantitative. The equilibrium elastic modulus was retrieved from the wire oscillation amplitudes, and agrees with polymer-dynamics theory.

12.
Sci Total Environ ; 532: 556-63, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26100735

RESUMO

The physicochemical characteristics of hematite nanoparticles related to their size, surface area and reactivity make them useful for many applications, as well as suitable models to study aggregation kinetics. For several applications (such as remediation of contaminated groundwater) it is crucial to maintain the stability of hematite nanoparticle suspensions in order to assure their arrival to the target place. The use of biopolymers has been proposed as a suitable environmentally friendly option to avoid nanoparticle aggregation and assure their stability. The aim of the present work was to investigate the formation of complexes between hematite nanoparticles and a non-conventional galactomannan (vinal gum--VG) obtained from Prosopis ruscifolia in order to promote hematite nanoparticle coating with a green biopolymer. Zeta potential and size of hematite nanoparticles, VG dispersions and the stability of their mixtures were investigated, as well as the influence of the biopolymer concentration and preparation method. DLS and nanoparticle tracking analysis techniques were used for determining the size and the zeta-potential of the suspensions. VG showed a polydispersed size distribution (300-475 nm Z-average diameter, 0.65 Pdi) and a negative zeta potential (between -1 and -12 mV for pH2 and 12, respectively). The aggregation of hematite nanoparticles (3.3 mg/L) was induced by the addition of VG at lower concentrations than 2mg/L (pH5.5). On the other hand, hematite nanoparticles were stabilized at concentrations of VG higher than 2 mg/L. Several phenomena between hematite nanoparticles and VG were involved: steric effects, electrostatic interactions, charge neutralization, charge inversion and polymer bridging. The process of complexation between hematite nanoparticles and the biopolymer was strongly influenced by the preparation protocols. It was concluded that the aggregation, dispersion, and stability of hematite nanoparticles depended on biopolymer concentration and also on the way of preparation and initial physicochemical properties of the aqueous system.


Assuntos
Compostos Férricos/química , Mananas/química , Modelos Químicos , Nanopartículas/química , Galactose/análogos & derivados , Cinética , Tamanho da Partícula , Eletricidade Estática
13.
Water Res ; 80: 139-48, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26001280

RESUMO

Interaction between engineered nanoparticles and natural organic matter is investigated by measuring the exchanged heat during binding process with isothermal titration calorimetry. TiO2 anatase nanoparticles and alginate are used as engineered nanoparticles and natural organic matter to get an insight into the thermodynamic association properties and mechanisms of adsorption and agglomeration. Changes of enthalpy, entropy and total free energy, reaction stoichiometry and affinity binding constant are determined or calculated at a pH value where the TiO2 nanoparticles surface charge is positive and the alginate exhibits a negative structural charge. Our results indicate that strong TiO2-alginate interactions are essentially entropy driven and enthalpically favorable with exothermic binding reactions. The reaction stoichiometry and entropy gain are also found dependent on the mixing order. Finally correlation is established between the binding enthalpy, the reaction stoichiometry and the zeta potential values determined by electrophoretic mobility measurements. From these results two types of agglomeration mechanisms are proposed depending on the mixing order. Addition of alginate in TiO2 dispersions is found to form agglomerates due to polymer bridging whereas addition of TiO2 in alginate promotes a more individually coating of the nanoparticles.


Assuntos
Alginatos/química , Nanopartículas Metálicas/química , Termodinâmica , Titânio/química , Adsorção , Algoritmos , Calorimetria/métodos , Entropia , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio , Modelos Químicos , Tamanho da Partícula
14.
Sci Total Environ ; 535: 28-34, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25726181

RESUMO

Agglomeration and disagglomeration processes are expected to play a key role on the fate of engineered nanoparticles in natural aquatic systems. These processes are investigated here in detail by studying first the stability of TiO2 nanoparticles in the presence of monovalent and divalent electrolytes at different pHs (below and above the point of zero charge of TiO2) and discussing the importance of specific divalent cation adsorption with the help of the DLVO theory as well as the importance of the nature of the counterions. Then the impact of one polysaccharide (alginate) on the stability of agglomerates formed under pH and water hardness representative of Lake Geneva environmental conditions is investigated. In these conditions the large TiO2 agglomerates (diameter>1µm) are positively charged due to Ca(2+) and Mg(2+) specific adsorption and alginate, which is negatively charged, adsorbs onto the agglomerate surface. Our results indicate that the presence of alginate at typical natural organic matter concentration (1-10 mg L(-1)) strongly modifies the TiO2 agglomerate (50 mg L(-1)) stability by inducing their partial and rapid disagglomeration. The importance of disagglomeration is found dependent on the alginate concentration with maximum of disagglomeration obtained for alginate concentration ≥8 mg L(-1) and leading to 400 nm fragments. From an environmental point of view partial restabilization of TiO2 agglomerates in the presence of alginate constitutes an important outcome. Disagglomeration will enhance their transport and residence time in aquatic systems which is an important step in the current knowledge on risk assessment associated to engineered nanoparticles.


Assuntos
Alginatos/química , Modelos Químicos , Nanopartículas/química , Titânio/química , Poluentes Químicos da Água/química , Adsorção , Eletrólitos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio
15.
Chimia (Aarau) ; 68(11): 783-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26508485

RESUMO

Major concerns to elucidate the fate of nanomaterials and manufactured nanoparticles in aquatic systems are related to the lack of data on nanoparticle transformations under relevant environmental conditions. The present article discusses some of the important physicochemical processes controlling the behavior of manufactured nanoparticles in aqueous systems by focusing on their interaction with natural organic matter, which is expected to play a crucial role when adsorbing at the nanoparticle surface. The precise knowledge and consequences of such adsorption processes are important not only to predict the nanoparticle stability and dispersion state but also to evaluate their chemical reactivity and ecotoxicology. Most importantly, findings indicate that the presence of natural organic matter, at typical environmental concentrations, can induce significant disagglomeration of large nanoparticle agglomerates into small fragments. Such a result constitutes an important outcome with regard to the risk associated with the possible transformation and redispersion of large assemblies containing manufactured nanoparticles.


Assuntos
Nanopartículas/toxicidade , Poluentes Químicos da Água , Adsorção , Ecotoxicologia , Nanoestruturas , Medição de Risco
16.
Water Res ; 47(16): 6052-63, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23969399

RESUMO

The behavior of manufactured TiO2 nanoparticles is studied in a systematic way in presence of alginate and Suwannee River humic acids at variable concentrations. TiO2 nanoparticles aggregation, disaggregation and stabilization are investigated using dynamic light scattering and electrophoretic experiments allowing the measurement of z-average hydrodynamic diameters and zeta potential values. Stability of the TiO2 nanoparticles is discussed by considering three pH-dependent electrostatic scenarios. In the first scenario, when pH is below the TiO2 nanoparticle point of zero charge, nanoparticles exhibit a positively charged surface whereas alginate and Suwannee River humic acids are negatively charged. Fast adsorption at the TiO2 nanoparticles occurs, promotes surface charge neutralization and aggregation. By increasing further alginate and Suwannee River humic acids concentrations charge inversion and stabilization of TiO2 nanoparticles are obtained. In the second electrostatic scenario, at the surface charge neutralization pH, TiO2 nanoparticles are rapidly forming aggregates. Adsorption of alginate and Suwannee River humic acids on aggregates leads to their partial fragmentation. In the third electrostatic scenario, when nanoparticles, alginate and Suwannee River humic acids are negatively charged, only a small amount of Suwannee River humic acids is adsorbed on TiO2 nanoparticles surface. It is found that the fate and behavior of individual and aggregated TiO2 nanoparticles in presence of environmental compounds are mainly driven by the complex interplay between electrostatic attractive and repulsive interactions, steric and van der Waals interactions, as well as concentration ratio. Results also suggest that environmental aquatic concentration ranges of humic acids and biopolymers largely modify the stability of aggregated or dispersed TiO2 nanoparticles.


Assuntos
Alginatos/química , Substâncias Húmicas , Nanopartículas/química , Titânio/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio
17.
Chem Commun (Camb) ; 48(10): 1604-6, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22159525

RESUMO

Two complementary artificial diether phospholipids were synthesized that can undergo a Cu(I)-catalyzed Huisgen-Sharpless click reaction. The resulting lipid can bridge the membranes of large unilamellar vesicles and cause their aggregation and ultimately their fusion.


Assuntos
Fosfolipídeos/química , Triazóis/química , Catálise , Química Click , Cobre/química , Estrutura Molecular , Tamanho da Partícula , Fosfolipídeos/síntese química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...