Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 769: 144243, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33493911

RESUMO

The harmful effect of carbon pollution leads to depletion of the ozone layer, which is one of the main challenges confronting the world. Although progress is made in developing different carbon dioxide (CO2) capturing methods, these methods are still expensive and face several technical challenges. Fuel cells (FCs) are efficient energy converting devices that produce energy via an electrochemical process. Recently varying kinds of fuel cells are considered as an effective method for CO2 capturing and/or conversion. Among the different types of fuel cells, solid oxide fuel cells (SOFCs), molten carbonate fuel cells (MCFCs), and microbial fuel cells (MFCs) demonstrated promising results in this regard. High-temperature fuel cells such as SOFCs and MCFCs are effectively used for CO2 capturing through their electrolyte and have shown promising results in combination with power plants or industrial effluents. An algae-based microbial fuel cell is an electrochemical device used to capture and convert carbon dioxide through the photosynthesis process using algae strains to organic matters and simultaneously power generation. This review present a brief background about carbon capture and storage techniques and the technological advancement related to carbon dioxide captured by different fuel cells, including molten carbonate fuel cells, solid oxide fuel cells, and algae-based fuel cells.

2.
Nutrients ; 12(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526930

RESUMO

The composition of human breast milk is affected by several factors, including genetics, geographic location and maternal nutrition. This study investigated the human milk oligosaccharides (HMOs) of breastfeeding mothers living in Dubai and their relations with the milk microbiota. A total of 30 breast milk samples were collected from healthy Emirati and UAE-expatriates at Latifa Hospital. HMO profiling was performed using UHPLC-MS. Microbiota profiles were determined by sequencing amplicons of the V3-V4 region of the 16S rRNA gene. HMO concentrations were significantly higher in Emirati, and dropped with the lactation period in both groups of mothers. The Le (a-b+)-secretor (Le+Se+) type was the most abundant in Dubai mothers (60%), followed by the Le(a-b-)-secretor (Le-Se+) type (23%). Bifidobacterium and Lactobacillus were considerably lower in Dubai-based mothers, while Pseudomonas and Delftia (Hydrogenophaga) were detected at a higher abundance compared to mothers from other countries. Atopobium was correlated with sialyl-lacto-N-tetraose c, Leptotrichia and Veillonella were correlated with 6'-sialyl-lactose, and Porphyromonas was correlated with lacto-N-hexaose. The study highlights the HMO profiles of breastfeeding mothers in Dubai and reveals few correlations with milk microbial composition. Targeted genomic analyses may help in determining whether these differences are due to genetic variations or to sociocultural and environmental factors.


Assuntos
Microbiota/fisiologia , Leite Humano/química , Leite Humano/microbiologia , Oligossacarídeos/análise , Adulto , Bactérias/classificação , Bactérias/genética , Aleitamento Materno , Feminino , Humanos , Lactação/fisiologia , RNA Ribossômico 16S/genética , Emirados Árabes Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...