Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotech Histochem ; : 1-9, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869850

RESUMO

In recent years, a worldwide reassessment of natural dyes has occurred, driven by the health and environmental issues associated with synthetic dyes. Haematoxylum campechianum L. is a tropical tree from which wood extracts were widely used in the textile industry during the 16th century. The logwood tree extract serves as a contemporary source of hematoxylin, a key dye in the globally prevalent hematoxylin-eosin staining method, a cornerstone in histopathological procedures. This paper will initially explore the re-emergence of natural dyes. Subsequently, it will focus on the historical, conventional, and innovative applications of logwood in the fields of medicine, histopathology, and nanotechnology, along with the status and alternative uses of the hematoxylin-eosin stain. Lastly, this paper will examine the current state of conservation and utilization of Haematoxylum campechianum in Campeche, Mexico, a leading global producer of hematoxylin.

2.
Curr Issues Mol Biol ; 44(11): 5718-5727, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421671

RESUMO

The luteinizing hormone receptor (LHR) is a glycoprotein member of the G protein-coupled receptors superfamily. It participates in corpus luteum formation and ovulation in females and acts in testosterone synthesis and spermatogenesis in males. In this study, we extracted RNA from sheep testicles and synthetized the cDNA to amplify the gene lhr-bed. This gene consists of 762 bp and encodes 273 amino acids of the extracellular domain of LHR. The lhr-bed was cloned into pJET1.2/blunt, then subcloned into pCOLD II, and finally, transformed in E. coli BL21 (DE3) cells. Because the induced rLHR-Bed protein was found in the insoluble fraction, we followed a modified purification protocol involving induction at 25 °C, subjection to denaturing conditions, and on-column refolding to increase solubility. We confirmed rLHR-Bed expression by means of Western blot and mass spectrometry analysis. It is currently known that the structure stem-loop 5'UTR on pCOLD II vector is stable at 15 °C. We predicted and obtained RNAfold stability at 25 °C. We successfully obtained the recombinant LHR extracellular domain, with protein yields of 0.2 mg/L, and purity levels of approximately 90%, by means of a single chromatographic purification step. The method described here may be used to obtain large quantities of rLHR-Bed in the future.

3.
Plants (Basel) ; 11(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684270

RESUMO

Resilience of growing in arid and semiarid regions and a high capacity of accumulating sugar-rich biomass with low lignin percentages have placed Agave species as an emerging bioenergy crop. Although transcriptome sequencing of fiber-producing agave species has been explored, molecular bases that control wall cell biogenesis and metabolism in agave species are still poorly understood. Here, through RNAseq data mining, we reconstructed the cellulose biosynthesis pathway and the phenylpropanoid route producing lignin monomers in A. tequilana, and evaluated their expression patterns in silico and experimentally. Most of the orthologs retrieved showed differential expression levels when they were analyzed in different tissues with contrasting cellulose and lignin accumulation. Phylogenetic and structural motif analyses of putative CESA and CAD proteins allowed to identify those potentially involved with secondary cell wall formation. RT-qPCR assays revealed enhanced expression levels of AtqCAD5 and AtqCESA7 in parenchyma cells associated with extraxylary fibers, suggesting a mechanism of formation of sclerenchyma fibers in Agave similar to that reported for xylem cells in model eudicots. Overall, our results provide a framework for understanding molecular bases underlying cell wall biogenesis in Agave species studying mechanisms involving in leaf fiber development in monocots.

4.
Int J Mol Sci ; 24(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36613768

RESUMO

Phage therapy consists of applying bacteriophages, whose natural function is to kill specific bacteria. Bacteriophages are safe, evolve together with their host, and are environmentally friendly. At present, the indiscriminate use of antibiotics and salt minerals (Zn2+ or Cu2+) has caused the emergence of resistant strains that infect crops, causing difficulties and loss of food production. Phage therapy is an alternative that has shown positive results and can improve the treatments available for agriculture. However, the success of phage therapy depends on finding effective bacteriophages. This review focused on describing the potential, up to now, of applying phage therapy as an alternative treatment against bacterial diseases, with sustainable improvement in food production. We described the current isolation techniques, characterization, detection, and selection of lytic phages, highlighting the importance of complementary studies using genome analysis of the phage and its host. Finally, among these studies, we concentrated on the most relevant bacteriophages used for biocontrol of Pseudomonas spp., Xanthomonas spp., Pectobacterium spp., Ralstonia spp., Burkholderia spp., Dickeya spp., Clavibacter michiganensis, and Agrobacterium tumefaciens as agents that cause damage to crops, and affect food production around the world.


Assuntos
Bacteriófagos , Pectobacterium , Terapia por Fagos , Bacteriófagos/genética , Bactérias/genética , Produtos Agrícolas , Biologia Computacional
5.
3 Biotech ; 11(2): 75, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33505830

RESUMO

Together with their undeniable role in the ecology of arid and semiarid ecosystems, Agave species are emerging as a model to dissect the relationships between crassulacean acid metabolism and high efficiency of light and water use, and as an energy crop for bioethanol production. Transcriptome resources from economically valuable Agaves species, such as Agave tequilana and A. salmiana, as well as hybrids for fibers, are now available, and multiple gene expression landscape analyses have been reported. Key components in molecular mechanisms underlying drought tolerance could be uncovered by analyzing gene expression patterns of roots. This study describes an efficient protocol for high-quality total RNA isolation from phenolic compounds-rich Agave roots. Our methodology involves suitable root handling and collecting in the field and using saving-time commercial kits available. RNA isolated from roots free of lignified out-layers and clean cortex showed high values of quality and integrity according to electrophoresis and microfluidics-based platform. Synthesis of long full-length cDNAs and PCR amplification tested the suitability for downstream applications of extracted RNA. The protocol was applied successfully to A. tequilana roots but can be used for other Agave species that also develop lignified epidermis/exodermis in roots.

6.
Plants (Basel) ; 9(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255527

RESUMO

Spines are key plant modifications developed to deal against herbivores; however, its physical structure and chemical composition have been little explored in plant species. Here, we took advantage of high-throughput chromatography to characterize chemical composition of Agave fourcroydes Lem. spines, a species traditionally used for fiber extraction. Analyses of structural carbohydrate showed that spines have lower cellulose content than leaf fibers (52 and 72%, respectively) but contain more than 2-fold the hemicellulose and 1.5-fold pectin. Xylose and galacturonic acid were enriched in spines compared to fibers. The total lignin content in spines was 1.5-fold higher than those found in fibers, with elevated levels of syringyl (S) and guaiacyl (G) subunits but similar S/G ratios within tissues. Metabolomic profiling based on accurate mass spectrometry revealed the presence of phenolic compounds including quercetin, kaempferol, (+)-catechin, and (-)-epicatechin in A. fourcroydes spines, which were also detected in situ in spines tissues and could be implicated in the color of these plants' structures. Abundance of (+)-catechins could also explain proanthocyanidins found in spines. Agave spines may become a plant model to obtain more insights about cellulose and lignin interactions and condensed tannin deposition, which is valuable knowledge for the bioenergy industry and development of naturally dyed fibers, respectively.

7.
Mar Genomics ; 46: 16-28, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30857856

RESUMO

Ten publicly available metagenomic data sets from hydrothermal vents were analyzed to determine the taxonomic structure of the viral communities present, as well as their potential metabolic functions. The type of natural selection on two auxiliary metabolic genes was also analyzed. The structure of the virome in the hydrothermal vents was quite different in comparison with the viruses present in sediments, with specific populations being present in greater abundance in the plume samples when compared with the sediment samples. ssDNA genomes such as Circoviridae and Microviridae were predominantly present in the sediment samples, with Caudovirales which are dsDNA being present in the vent samples. Genes potentially encoding enzymes that participate in carbon, nitrogen and sulfur metabolic pathways were found in greater abundance, than those involved in the oxygen cycle, in the hydrothermal vents. Functional profiling of the viromes, resulted in the discovery of genes encoding proteins involved in bacteriophage capsids, DNA synthesis, nucleotide synthesis, DNA repair, as well as viral auxiliary metabolic genes such as cytitidyltransferase and ribonucleotide reductase. These auxiliary metabolic genes participate in the synthesis of phospholipids and nucleotides respectively and are likely to contribute to enhancing the fitness of their bacterial hosts within the hydrothermal vent communities. Finally, evolutionary analysis suggested that these auxiliary metabolic genes are highly conserved and evolve under purifying selection, and are thus maintained in their genome.


Assuntos
Extremófilos/virologia , Genes Virais/genética , Fontes Hidrotermais/virologia , Vírus/classificação , Vírus/genética , Variação Genética , Metagenoma/genética , Proteínas Virais/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-29971219

RESUMO

In eukaryotic cells, the life cycle of mRNA molecules is modulated in response to environmental signals and cell-cell communication in order to support cellular homeostasis. Capping, splicing and polyadenylation in the nucleus lead to the formation of transcripts that are suitable for translation in cytoplasm, until mRNA decay occurs in P-bodies. Although pre-mRNA processing and degradation mechanisms have usually been studied separately, they occur simultaneously and in a coordinated manner through protein-protein interactions, maintaining the integrity of gene expression. In the past few years, the availability of the genome sequence of Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, coupled to the development of the so-called "omics" technologies provided new opportunities for the study of mRNA processing and turnover in this pathogen. Here, we review the current knowledge about the molecular basis for splicing, 3' end formation and mRNA degradation in amoeba, which suggest the conservation of events related to mRNA life throughout evolution. We also present the functional characterization of some key proteins and describe some interactions that indicate the relevance of cooperative regulatory events for gene expression in this human parasite.


Assuntos
Entamoeba histolytica/genética , Proteínas de Protozoários/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Amebíase/parasitologia , Animais , Entamoeba histolytica/fisiologia , Evolução Molecular , Humanos , Poliadenilação , Proteínas de Protozoários/genética , Precursores de RNA/genética , Splicing de RNA , Estabilidade de RNA , RNA Mensageiro/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-30671387

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that function as negative regulators of gene expression. Recent evidences suggested that host cells miRNAs are involved in the progression of infectious diseases, but its role in amoebiasis remains largely unknown. Here, we reported an unexplored role for miRNAs of human epithelial colon cells during the apoptosis induced by Entamoeba histolytica. We demonstrated for the first time that SW-480 colon cells change their miRNAs profile in response to parasite exposure. Our data showed that virulent E. histolytica trophozoites induced apoptosis of SW-480 colon cells after 45 min interaction, which was associated to caspases-3 and -9 activation. Comprehensive profiling of 667 miRNAs using Taqman Low-Density Arrays showed that 6 and 15 miRNAs were significantly (FC > 1.5; p < 0.05) modulated in SW-480 cells after 45 and 75 min interaction with parasites, respectively. Remarkably, no significant regulation of the 6-miRNAs signature (miR-526b-5p, miR-150, miR-643, miR-615-5p, miR-525, and miR-409-3p) was found when SW-480 cells were exposed to non-virulent Entamoeba dispar. Moreover, we confirmed that miR-150, miR-643, miR-615-5p, and miR-525 exhibited similar regulation in SW-480 and Caco2 colon cells after 45 min interaction with trophozoites. Exhaustive bioinformatic analysis of the six-miRNAs signature revealed intricate miRNAs-mRNAs co-regulation networks in which the anti-apoptotic XIAP, API5, BCL2, and AKT1 genes were the major targets of the set of six-miRNAs. Of these, we focused in the study of functional relationships between miR-643, upregulated at 45 min interaction, and its predicted target X-linked inhibitor of apoptosis protein (XIAP). Interestingly, interplay of amoeba with SW-480 cells resulted in downregulation of XIAP consistent with apoptosis activation. More importantly, loss of function studies using antagomiRs showed that forced inhibition of miR-643 leads to restoration of XIAP levels and suppression of both apoptosis and caspases-3 and -9 activation. Congruently, mechanistic studies using luciferase reporter assays confirmed that miR-643 exerts a postranscripcional negative regulation of XIAP by targeting its 3'-UTR indicating that it's a downstream effector. In summary, we provide novel lines of evidence suggesting that early-branched eukaryote E. histolytica may promote apoptosis of human colon cells by modulating, in part, the host microRNome which highlight an unexpected role for miRNA-643/XIAP axis in the host cellular response to parasites infection.


Assuntos
Apoptose , Entamoeba histolytica/crescimento & desenvolvimento , Células Epiteliais/parasitologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , MicroRNAs/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Linhagem Celular , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Fatores de Tempo
10.
Sci Rep ; 6: 19611, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26792358

RESUMO

Entamoeba histolytica is the intestinal parasite responsible for human amoebiasis that is a leading cause of death in developing countries. In this protozoan, heterogeneity in DNA content, polyploidy and genome plasticity have been associated to alterations in mechanisms controlling DNA replication and cell division. Studying the function of the transcription factor EhPC4, we unexpectedly found that it is functionally related to DNA replication, and multinucleation. Site-directed mutagenesis on the FRFPKG motif revealed that the K127 residue is required for efficient EhPC4 DNA-binding activity. Remarkably, overexpression of EhPC4 significantly increased cell proliferation, DNA replication and DNA content of trophozoites. A dramatically increase in cell size resulting in the formation of giant multinucleated trophozoites (polykaryon) was also found. Multinucleation event was associated to cytokinesis failure leading to abortion of ongoing cell division. Consistently, genome-wide profiling of EhPC4 overexpressing trophozoites revealed the up-regulation of genes involved in carbohydrates and nucleic acids metabolism, chromosome segregation and cytokinesis. Forced overexpression of one of these genes, EhNUDC (nuclear movement protein), led to alterations in cytokinesis and partially recapitulated the multinucleation phenotype. These data indicate for the first time that EhPC4 is associated with events related to polyploidy and genome stability in E. histolytica.


Assuntos
Entamoeba histolytica/genética , Entamoeba histolytica/metabolismo , Poliploidia , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Proliferação de Células , Segregação de Cromossomos , Sequência Conservada , Citocinese , DNA/genética , DNA/metabolismo , Replicação do DNA , Evolução Molecular , Expressão Gênica , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/química
11.
Korean J Parasitol ; 53(5): 583-95, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26537038

RESUMO

DEAD/DExH-box RNA helicases catalyze the folding and remodeling of RNA molecules in prokaryotic and eukaryotic cells, as well as in many viruses. They are characterized by the presence of the helicase domain with conserved motifs that are essential for ATP binding and hydrolysis, RNA interaction, and unwinding activities. Large families of DEAD/DExH-box proteins have been described in different organisms, and their role in all molecular processes involving RNA, from transcriptional regulation to mRNA decay, have been described. This review aims to summarize the current knowledge about DEAD/DExH-box proteins in selected protozoan and nematode parasites of medical importance worldwide, such as Plasmodium falciparum, Leishmania spp., Trypanosoma spp., Giardia lamblia, Entamoeba histolytica, and Brugia malayi. We discuss the functional characterization of several proteins in an attempt to understand better the molecular mechanisms involving RNA in these pathogens. The current data also highlight that DEAD/DExH-box RNA helicases might represent feasible drug targets due to their vital role in parasite growth and development.


Assuntos
Eucariotos/enzimologia , Regulação da Expressão Gênica , Parasitos/enzimologia , RNA Helicases/metabolismo , RNA/metabolismo , Animais
12.
J Proteomics ; 111: 59-73, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24998979

RESUMO

In higher eukaryotic cells mRNA degradation initiates by poly(A) tail shortening catalyzed by deadenylases CAF1 and CCR4. In spite of the key role of mRNA turnover in gene expression regulation, the underlying mechanisms remain poorly understood in parasites. Here, we aimed to study the function of EhCAF1 and identify associated proteins in Entamoeba histolytica. By biochemical assays, we evidenced that EhCAF1 has both RNA binding and deadenylase activities in vitro. EhCAF1 was located in cytoplasmic P-bodies that increased in number and size after cellular stress induced by DNA damage, heat shock, and nitric oxide. Using pull-down assays and ESI-MS/MS mass spectrometry, we identified 15 potential EhCAF1-interacting proteins, including the endoribonuclease EhL-PSP. Remarkably, EhCAF1 colocalized with EhL-PSP in cytoplasmic P-bodies in trophozoites. Bioinformatic analysis of EhL-PSP network proteins predicts a potential interaction with EhRRP41 exosome protein. Consistently, we evidenced that EhL-PSP colocalizes and physically interacts with EhRRP41. Strikingly, EhRRP41 did not coimmunoprecipitate EhCAF1, suggesting the existence of two EhL-PSP-containing complexes. In conclusion, our results showed novel interactions between mRNA degradation proteins and evidenced for the first time that EhCAF1 is a functional deadenylase that interacts with EhL-PSP endoribonuclease in P-bodies, while EhL-PSP interacts with EhRRP41 exosome protein in this early-branched eukaryote. BIOLOGICAL SIGNIFICANCE: This study provides evidences for the functional deadenylase activity of EhCAF1 and shows a link between different mRNA degradation proteins in E. histolytica. By proteomic tools and pull down assays, we evidenced that EhCAF1 interacts with the putative endoribonuclease EhL-PSP, which in turn interacts with exosome EhRRP41 protein. Our data suggest for the first time the presence of two complexes, one containing the endoribonuclease EhL-PSP and the deadenylase EhCAF1 in P-bodies; and another containing the endoribonuclease EhL-PSP and the exosome EhRRP41 exoribonuclease. Overall, these results provide novel data that may help to understand mRNA decay mechanisms in this parasite.


Assuntos
Endorribonucleases/metabolismo , Entamoeba histolytica/metabolismo , Exossomos/metabolismo , Proteômica , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biologia Computacional , Citoplasma/metabolismo , Dano ao DNA , Temperatura Alta , Imunoprecipitação , Microscopia de Fluorescência , Dados de Sequência Molecular , Óxido Nítrico/metabolismo , Ligação Proteica , Conformação Proteica , Proteoma , RNA/química , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Ribonuclease III/metabolismo , Ribonucleases/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização por Electrospray
13.
J Proteomics ; 111: 46-58, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24721673

RESUMO

Actin cytoskeleton is an essential structure involved in cell migration and invasion in parasites. In Entamoeba histolytica, the protozoan parasite causing human amoebiasis, the mechanisms underlying the expression of migration-related genes are poorly understood. Here, we investigated the biological effects of ectopic overexpression of EhPC4 (positive coactivator 4) in cell migration of E. histolytica trophozoites. Using differential in gel two-dimensional electrophoresis, 33 modulated proteins were detected in EhPC4-overexpressing cells. By electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis, 16 of these proteins were identified. Interestingly, four up-regulated proteins involved in cytoskeleton organization and cell migration were identified. Particularly, we found the up-regulation of a 16-kDa actin-binding protein (EhABP16) which is a putative member of the cofilin/tropomyosin family involved in actin polymerization. EhPC4 overexpression induced a significant increase in migration of trophozoites and in the destruction of human SW480 colon cells. Consistently, silencing of gene expression by RNA interference of EhABP16 significantly impairs cell migration. These changes were associated to alterations in the organization of actin cytoskeleton, and suppression of uropod-like structure formation in EhABP16-deficient cells. In summary, we have uncovered novel proteins modulated by EhPC4, including EhABP16, with a potential role in cell migration, cytopathogenicity and virulence in E. histolytica. BIOLOGICAL SIGNIFICANCE: The human pathogen Entamoeba histolytica infects around 50million people worldwide resulting in 40,000-100,000 deaths annually. Cell motility is a complex trait that is critical for parasites adaptation, spread and invasion processes into host tissues; it has been associated with virulence. In this study, we used a differential proteomic approach to demonstrate that E. histolytica EhPC4 induces changes in the expression of actin cytoskeleton proteins, including EhABP16, promoting a significant increase in cell motility and destruction of intestinal human cells. Particularly, we demonstrated for the first time that abrogation of EhABP16 impairs cell migration by altering the actin cytoskeleton dynamics and uropod-like structure formation in trophozoites. These data contribute to the understanding of molecular mechanisms that regulate virulence properties in this neglected protozoan parasite.


Assuntos
Entamoeba histolytica/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteoma , Proteínas de Protozoários/metabolismo , Fatores de Transcrição/metabolismo , Actinas/metabolismo , Animais , Anticorpos Antiprotozoários/biossíntese , Linhagem Celular Tumoral , Movimento Celular , Citoesqueleto/metabolismo , Eletroforese em Gel Bidimensional , Inativação Gênica , Humanos , Masculino , Proteômica , Interferência de RNA , Coelhos , Espectrometria de Massas por Ionização por Electrospray , Trofozoítos/metabolismo
14.
Wiley Interdiscip Rev RNA ; 5(2): 247-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24249245

RESUMO

Although extraordinary rapid advance has been made in the knowledge of mechanisms regulating messenger RNA (mRNA) metabolism in mammals and yeast, little information is known in deep-branching eukaryotes. The complete genome sequence of Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, provided a lot of information for the identification and comparison of regulatory sequences and proteins potentially involved in mRNA synthesis, processing, and degradation. Here, we review the current knowledge of mRNA metabolism in this human pathogen. Several DNA motifs in promoter and nuclear factors involved in transcription, as well as conserved polyadenylation sequences in mRNA 3'-untranslated region and possible cleavage and polyadenylation factors, are described. In addition, we present recent data about proteins involved in mRNA decay with a special focus on the recently reported P-bodies in amoeba. Models for mechanisms of decapping and deadenylation-dependent pathways are discussed. We also review RNA-based gene silencing mechanisms and describe the DEAD/DExH box RNA helicases that are molecular players in all mRNA metabolism reactions. The functional characterization of selected proteins allows us to define a general framework to describe how mRNA synthesis, processing, and decay may occur in E. histolytica. Taken altogether, studies of mRNA metabolism in this single-celled eukaryotic model suggest the conservation of specific gene expression regulatory events through evolution.


Assuntos
Regiões 3' não Traduzidas/fisiologia , Entamoeba histolytica/fisiologia , Regulação da Expressão Gênica/fisiologia , Modelos Biológicos , Estabilidade de RNA/fisiologia , RNA de Protozoário/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Evolução Molecular , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA de Protozoário/genética
15.
PLoS One ; 7(9): e45966, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029343

RESUMO

In higher eukaryotes, mRNA degradation and RNA-based gene silencing occur in cytoplasmic foci referred to as processing bodies (P-bodies). In protozoan parasites, the presence of P-bodies and their putative role in mRNA decay have yet to be comprehensively addressed. Identification of P-bodies might provide information on how mRNA degradation machineries evolved in lower eukaryotes. Here, we used immunofluorescence and confocal microscopy assays to investigate the cellular localization of mRNA degradation proteins in the human intestinal parasite Entamoeba histolytica and found evidence of the existence of P-bodies. Two mRNA decay factors, namely the EhXRN2 exoribonuclease and the EhDCP2 decapping enzyme, were localized in cytoplasmic foci in a pattern resembling P-body organization. Given that amoebic foci appear to be smaller and less rounded than those described in higher eukaryotes, we have named them "P-body-like structures". These foci contain additional mRNA degradation factors, including the EhCAF1 deadenylase and the EhAGO2-2 protein involved in RNA interference. Biochemical analysis revealed that EhCAF1 co-immunoprecipitated with EhXRN2 but not with EhDCP2 or EhAGO2-2, thus linking deadenylation to 5'-to-3' mRNA decay. The number of EhCAF1-containing foci significantly decreased after inhibition of transcription and translation with actinomycin D and cycloheximide, respectively. Furthermore, results of RNA-FISH assays showed that (i) EhCAF1 colocalized with poly(A)(+) RNA and (ii) during silencing of the Ehpc4 gene by RNA interference, EhAGO2-2 colocalized with small interfering RNAs in cytoplasmic foci. Our observation of decapping, deadenylation and RNA interference proteins within P-body-like foci suggests that these structures have been conserved after originating in the early evolution of eukaryotic lineages. To the best of our knowledge, this is the first study to report on the localization of mRNA decay proteins within P-body-like structures in E. histolytica. Our findings should open up opportunities for deciphering the mechanisms of mRNA degradation and RNA-based gene silencing in this deep-branching eukaryote.


Assuntos
Entamoeba histolytica/enzimologia , Entamoeba histolytica/metabolismo , Poli A/metabolismo , Proteínas de Protozoários/metabolismo , Estabilidade de RNA , RNA de Cadeia Dupla/metabolismo , Sequência de Aminoácidos , Endorribonucleases/análise , Endorribonucleases/genética , Endorribonucleases/metabolismo , Entamoeba histolytica/citologia , Entamoeba histolytica/genética , Exorribonucleases/análise , Exorribonucleases/genética , Exorribonucleases/metabolismo , Regulação da Expressão Gênica , Humanos , Intestinos/parasitologia , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , RNA de Cadeia Dupla/genética , Ribonucleases/genética , Ribonucleases/metabolismo , Transcrição Gênica
16.
Mol Genet Metab ; 92(3): 222-8, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17720579

RESUMO

Pyruvate carboxylase (PC) is a biotin-dependent enzyme that plays a crucial role in gluconeogenesis, lipogenesis, Krebs cycle anaplerosis and amino acid catabolism. Biotin deficiency reduces its mass besides its activity. Enzyme mass is the result of its cellular turnover, i.e., its rates of synthesis and degradation. We have now investigated, by a pulse and chase approach in cultured primary hepatocytes, the effects of biotin deficiency on these rates. Wistar rats were fed a biotin-deficient diet and the controls were fed the same diet supplemented with biotin; their biotin status was monitored measuring lymphocytes propionyl-CoA carboxylase activity and urinary 3-hydroxyisovaleric acid. After 6-7 weeks primary hepatocytes were cultured in biotin-deficient or complete DMEM. PC activity was determined by measuring the incorporation of (14)C-bicarbonate into acid-non-volatile products, and its mass by streptavidin Western blots. Its synthesis rate was estimated from [(35)S] methionine incorporation into anti-PC antibody immunoprecipitate. Its degradation rate was calculated from the loss of radioactivity from previously labeled hepatocytes, in a medium containing an excess of non-radioactive methionine. PC synthesis rate in biotin-deficient hepatocytes was approximately 4.5-fold lower than in the controls, and its degradation rate was 5.1-fold higher. Therefore, the decrement of PC mass during biotin deficiency results both from a decrease in its synthesis and an increase in its degradation rates. To our knowledge, this is the first instance where a mammalian enzyme cofactor is necessary to sustain both processes.


Assuntos
Biotina/deficiência , Hepatócitos/enzimologia , Linfócitos/enzimologia , Metilmalonil-CoA Descarboxilase/metabolismo , Piruvato Carboxilase/metabolismo , Animais , Biotinilação , Hepatócitos/citologia , Linfócitos/citologia , Masculino , Ratos , Ratos Wistar , Valeratos/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...