Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 43(8): 2791-8, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12147617

RESUMO

PURPOSE: Vascular endothelial growth factor (VEGF) plays an important role in initiation of the angiogenesis that leads to proliferative retinopathy. Several environmental conditions and chemical agents that influence the expression of VEGF can also cause endoplasmic reticulum (ER) stress. The hypothesis for the current study was that expression of VEGF is responsive to conditions that cause ER stress, including amino acid deprivation. METHODS: Confluent cultures of a human retinal pigmented epithelial cell line (ARPE-19) were deprived of amino acids or treated with chemical inducers of ER stress. Treatment with cobalt was used to mimic hypoxia-induced expression of VEGF. Northern blot analysis was used to measure intracellular VEGF mRNA, and ELISA was used to measure secreted VEGF protein. Glucose-regulated protein 78 (GRP78) mRNA levels were compared with those of VEGF. Glyceraldehyde-phosphate dehydrogenase (GAPDH) mRNA was used as a control. RESULTS: Conditions and chemical agents known to activate ER stress response (ERSR) pathways also induced the expression of VEGF. Deprivation of amino acids in the culture medium increased VEGF mRNA expression by 1.3- to 6-fold. Glucose deprivation or treatment of ARPE-19 cells with tunicamycin, brefeldin A, the calcium ionophore A23187, or thapsigargin increased the expression of VEGF mRNA in these cells by 8- to 10-fold. Expression of GRP78 mRNA was well correlated with that of VEGF mRNA under all conditions. These treatments also increased the secretion of VEGF protein by up to twofold. The increase in VEGF mRNA level in response to glutamine deprivation was rapid (greater than 10-fold) and was observed in a physiologically relevant range of glutamine concentrations. The half-life of VEGF mRNA was increased 2.5-fold by glutamine starvation. CONCLUSIONS: These results indicate that VEGF is an ER stress-responsive gene and suggest that cells can respond to nutrient deprivation by increasing VEGF expression through both transcriptional and posttranscriptional mechanisms.


Assuntos
Aminoácidos/deficiência , Hipóxia Celular/fisiologia , Retículo Endoplasmático/fisiologia , Fatores de Crescimento Endotelial/metabolismo , Proteínas de Choque Térmico , Linfocinas/metabolismo , Epitélio Pigmentado Ocular/metabolismo , Estresse Fisiológico/metabolismo , Northern Blotting , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Fatores de Crescimento Endotelial/genética , Ensaio de Imunoadsorção Enzimática , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Linfocinas/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...