Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638431

RESUMO

Early diagnosis of pediatric cancer is key for adequate patient management and improved outcome. Although multiparameter flow cytometry (MFC) has proven of great utility in the diagnosis and classification of hematologic malignancies, its application to non-hematopoietic pediatric tumors remains limited. Here we designed and prospectively validated a new single eight-color antibody combination-solid tumor orientation tube, STOT-for diagnostic screening of pediatric cancer by MFC. A total of 476 samples (139 tumor mass, 138 bone marrow, 86 lymph node, 58 peripheral blood, and 55 other body fluid samples) from 296 patients with diagnostic suspicion of pediatric cancer were analyzed by MFC vs. conventional diagnostic procedures. STOT was designed after several design-test-evaluate-redesign cycles based on a large panel of monoclonal antibody combinations tested on 301 samples. In its final version, STOT consists of a single 8-color/12-marker antibody combination (CD99-CD8/numyogenin/CD4-EpCAM/CD56/GD2/smCD3-CD19/cyCD3-CD271/CD45). Prospective validation of STOT in 149 samples showed concordant results with the patient WHO/ICCC-3 diagnosis in 138/149 cases (92.6%). These included: 63/63 (100%) reactive/disease-free samples, 43/44 (98%) malignant and 4/4 (100%) benign non-hematopoietic tumors together with 28/38 (74%) leukemia/lymphoma cases; the only exception was Hodgkin lymphoma that required additional markers to be stained. In addition, STOT allowed accurate discrimination among the four most common subtypes of malignant CD45- CD56++ non-hematopoietic solid tumors: 13/13 (GD2++ numyogenin- CD271-/+ nuMyoD1- CD99- EpCAM-) neuroblastoma samples, 5/5 (GD2- numyogenin++ CD271++ nuMyoD1++ CD99-/+ EpCAM-) rhabdomyosarcomas, 2/2 (GD2-/+ numyogenin- CD271+ nuMyoD1- CD99+ EpCAM-) Ewing sarcoma family of tumors, and 7/7 (GD2- numyogenin- CD271+ nuMyoD1- CD99- EpCAM+) Wilms tumors. In summary, here we designed and validated a new standardized antibody combination and MFC assay for diagnostic screening of pediatric solid tumors that might contribute to fast and accurate diagnostic orientation and classification of pediatric cancer in routine clinical practice.

2.
Stem Cells Int ; 2016: 3865315, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28053606

RESUMO

Bone marrow stromal cells (BMSCs) are considered a promising tool for bone bioengineering. However, the mechanisms controlling osteoblastic commitment are still unclear. Osteogenic differentiation of BMSCs requires the activation of ß-catenin signaling, classically known to be regulated by the canonical Wnt pathway. However, BMSCs treatment with canonical Wnts in vitro does not always result in osteogenic differentiation and evidence indicates that a more complex signaling pathway, involving cadherins, would be required to induce ß-catenin signaling in these cells. Here we showed that Wnt3a alone did not induce TCF activation in BMSCs, maintaining the cells at a proliferative state. On the other hand, we verified that, upon BMSCs osteoinduction with dexamethasone, cadherins were cleaved by the PS1/γ-secretase complex at the plasma membrane, and this event was associated with an enhanced ß-catenin translocation to the nucleus and signaling. When PS1/γ-secretase activity was inhibited, the osteogenic process was impaired. Altogether, we provide evidence that PS1/γ-secretase-mediated cadherin cleavage has as an important role in controlling ß-catenin signaling during the onset of BMSCs osteogenic differentiation, as part of a complex signaling pathway responsible for cell fate decision. A comprehensive map of these pathways might contribute to the development of strategies to improve bone repair.

3.
Biol Open ; 4(9): 1180-93, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26319582

RESUMO

Human adipose-derived stromal cells (hADSC) are a heterogeneous cell population that contains adult multipotent stem cells. Although it is well established that hADSC have skeletal potential in vivo in adult organisms, in vitro assays suggest further differentiation capacity, such as into glia. Thus, we propose that grafting hADSC into the embryo can provide them with a much more instructive microenvironment, allowing the human cells to adopt diverse fates or niches. Here, hADSC spheroids were grafted into either the presumptive presomitic mesoderm or the first branchial arch (BA1) regions of chick embryos. Cells were identified without previous manipulations via human-specific Alu probes, which allows efficient long-term tracing of heterogeneous primary cultures. When grafted into the trunk, in contrast to previous studies, hADSC were not found in chondrogenic or osteogenic territories up to E8. Surprisingly, 82.5% of the hADSC were associated with HNK1+ tissues, such as peripheral nerves. Human skin fibroblasts showed a smaller tropism for nerves. In line with other studies, hADSC also adopted perivascular locations. When grafted into the presumptive BA1, 74.6% of the cells were in the outflow tract, the final goal of cardiac neural crest cells, and were also associated with peripheral nerves. This is the first study showing that hADSC could adopt a perineural niche in vivo and were able to recognize cues for neural crest cell migration of the host. Therefore, we propose that xenografts of human cells into chick embryos can reveal novel behaviors of heterogeneous cell populations, such as response to migration cues.

4.
PLoS One ; 7(3): e33360, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22432015

RESUMO

BACKGROUND AND AIMS: Mesenchymal stromal cells (MSCs) were shown to have immunomodulatory activity and have been applied for treating immune-mediated disorders. We compared the homing and therapeutic action of cryopreserved subcutaneous adipose tissue (AT-MSCs) and bone marrow-derived mesenchymal stromal cells (BM-MSCs) in rats with trinitrobenzene sulfonic acid (TNBS)-induced colitis. METHODS: After colonoscopic detection of inflammation AT-MSCs or BM-MSCs were injected intraperitoneally. Colonoscopic and histologic scores were obtained. Density of collagen fibres and apoptotic rates were evaluated. Cytokine levels were measured in supernatants of colon explants. For cell migration studies MSCs and skin fibroblasts were labelled with Tc-99m or CM-DiI and injected intraperitonealy or intravenously. RESULTS: Intraperitoneal injection of AT-MSCs or BM-MSCs reduced the endoscopic and histopathologic severity of colitis, the collagen deposition, and the epithelial apoptosis. Levels of TNF-α and interleukin-1ß decreased, while VEGF and TGF-ß did not change following cell-therapy. Scintigraphy showed that MSCs migrated towards the inflamed colon and the uptake increased from 0.5 to 24 h. Tc-99m-MSCs injected intravenously distributed into various organs, but not the colon. Cm-DiI-positive MSCs were detected throughout the colon wall 72 h after inoculation, predominantly in the submucosa and muscular layer of inflamed areas. CONCLUSIONS: Intraperitoneally injected cryopreserved MSCs home to and engraft into the inflamed colon and ameliorate TNBS-colitis.


Assuntos
Movimento Celular , Colite/terapia , Colo/patologia , Criopreservação , Inflamação/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Apoptose , Células da Medula Óssea/citologia , Linhagem da Célula , Colite/complicações , Colite/patologia , Colágeno/metabolismo , Colonoscopia , Citocinas/biossíntese , Modelos Animais de Doenças , Inflamação/complicações , Injeções Intraperitoneais , Injeções Intravenosas , Mucosa Intestinal/patologia , Masculino , Ratos , Ratos Wistar , Gordura Subcutânea/citologia , Ácido Trinitrobenzenossulfônico , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...