Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 5230, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347181

RESUMO

Vascular graft surgeries are often conducted in trauma cases, which has increased the demand for scaffolds with good biocompatibility profiles. Biodegradable scaffolds resembling the extracellular matrix (ECM) of blood vessels are promising vascular graft materials. In the present study, polyurethane (PU) was blended with ECM proteins collagen and elastin (Col-El) and gelatin (Gel) to produce fibrous scaffolds by using the rotary jet spinning (RJS) technique, and their effects on in vitro properties were evaluated. Morphological and structural characterization of the scaffolds was performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Micrometric fibers with nanometric rugosity were obtained. Col-El and Gel reduced the mechanical strength and increased the hydrophilicity and degradation rates of PU. No platelet adhesion or activation was observed. The addition of proteins to the PU blend increased the viability, adhesion, and proliferation of human umbilical vein endothelial cells (HUVECs). Therefore, PU-Col-El and PU-Gel scaffolds are promising biomaterials for vascular graft applications.


Assuntos
Bioprótese , Poliuretanos , Prótese Vascular , Matriz Extracelular , Células Endoteliais da Veia Umbilical Humana , Humanos , Poliuretanos/química , Poliuretanos/farmacologia
2.
Artif Organs ; 45(5): E113-E122, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33169400

RESUMO

Tubular polymer scaffolds based on tissue engineering techniques have been studied as potential alternatives for vascular regeneration implants. The blood vessels of the cardiovascular system are mainly fibrous, composed of collagen (Col) and elastin (El), and its inner layer consists of endothelial cells. In this work, Col and El were combined with polyurethane (PU), a biocompatible synthetic polymer, and rotary jet spinning, a new and highly productive technique, to produce fibrous scaffolds. The scaffolds produced at 18 000 rpm presented homogeneous, bead-free, and solvent-free fibers. The blend formation between PU-Col-El was identified by chemical composition analysis and enhanced the thermal stability up to 324°C. The hydrophilic nature of the scaffold was revealed by its low contact angle. Cell viability of human umbilical vein endothelial cells with the scaffold was proven for 72 hours. The combined strategy of rotary jet spinning with a polymer blend containing Col and El was verified as an effective and promising alternative to obtain tubular scaffolds for tissue engineering on a large-scale production.


Assuntos
Materiais Biocompatíveis/química , Prótese Vascular , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Colágeno/química , Elastina/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Poliuretanos/química
3.
J Mech Behav Biomed Mater ; 65: 761-769, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27768940

RESUMO

In this study, we explored the Ti-Nb-Fe system to find an optimal cost-effective composition with the lowest elastic modulus and the lowest added Nb content. Six Ti-(31-4x)Nb-(1+0.5x)Fe ingots were prepared and Nb was substituted with Fe, starting at Ti-31Nb-1.0Fe and going up to Ti-11Nb-3.5Fe (wt%). The ingots were subjected to cold rolling, recrystallization and solution treatment, followed by water-quenching (WQ), furnace cooling (FC) or step-quenching to 350°C, which caused massive formation of isothermal ω phase. All the water-quenched alloys displayed athermal ω phase, which is apparently the result of fully collapsed ß phase. The Fe content improved the compressive strength of the alloys. In the FC alloys, substitution with Fe favored the formation of α phase instead of ω phase, giving rise to a solute-rich ß phase with a lattice parameter of 0.3249nm. Among the FC alloys, the lowest modulus of 83±4GPa was obtained in the Ti-19Nb-2.5Fe alloy, which exhibited fine and well dispersed α precipitation and absence of ω phase. DSC experiments indicated that the experimental alloys showed varying phase stability during heating.


Assuntos
Ligas/análise , Ferro/análise , Teste de Materiais , Nióbio/análise , Titânio/análise , Força Compressiva , Módulo de Elasticidade , Temperatura Alta
4.
J Mech Behav Biomed Mater ; 32: 31-38, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24394773

RESUMO

The correlation between the composition, aging heat treatments, microstructural features and mechanical properties of ß Ti alloys is of primary significance because it is the foundation for developing and improving new Ti alloys for orthopedic biomaterials. However, in the case of Ti-Mo alloys, this correlation is not fully described in the literature. Therefore, the purpose of this study was to experimentally investigate the effect of composition and aging heat treatments on the microstructure, Vickers hardness and elastic modulus of Ti-Mo alloys. These alloys were solution heat-treated and water-quenched, after which their response to aging heat treatments was investigated. Their microstructure, Vickers hardness and elastic modulus were evaluated, and the results allow us to conclude that stabilization of the ß phase is achieved with nearly 10% Mo when a very high cooling rate is applied. Young's modulus was found to be more sensitive to phase variations than hardness. In all of the compositions, the highest hardness values were achieved by aging at 723K, which was attributed to the precipitation of α and ω phases. All of the compositions aged at 573K, 623K and 723K showed overaging within 80h.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Temperatura Alta , Teste de Materiais , Fenômenos Mecânicos , Molibdênio/química , Titânio/química , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...