Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 107(10): 2150-2159, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31094062

RESUMO

Currently available scaffolds for tissue repair have shown very limited success, so many efforts have being put in the development of novel functional materials capable of regulating cell behavior and enhance the tissue healing rate. Piezoelectric materials, as zinc oxide (ZnO), can be a very interesting solution for scaffold development, as they can deliver electrical signals to cells upon mechanical solicitation, allowing the development of suitable microenvironments for tissue repair. This way, it is reported the deposition of ZnO thin films on a polymer by direct current magnetron sputtering, under different conditions, in order to obtain a piezoelectric ZnO thin film with potential for tissue repair applications. The obtained ZnO thin films were characterized in terms of morphology, crystallography, electrical conductivity, transmittance, piezoelectricity, and adhesion quality. The deposition process resulted in uniform films, with a very good adhesion to the substrate. The different deposition conditions influenced the evolution of the crystalline domains and preferential growths and consequently, the electrical properties of the films. One of the conditions resulted in a thin film with a high piezoelectric coefficient and a conductor behavior, being considered the most promising to act as a bioactive coating.


Assuntos
Especificidade de Órgãos , Polímeros/química , Cicatrização , Óxido de Zinco/química , Adesividade , Condutividade Elétrica , Oxigênio/química , Polietilenotereftalatos/química , Difração de Raios X
2.
An Acad Bras Cienc ; 91(suppl 1): e20170317, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29044327

RESUMO

Resident and circulating immune cells have been extensively studied due to their almost ubiquitous role in cell biology. Despite their classification under the "immune cell department", it is becoming increasingly clear that these cells are involved in many different non-immune related phenomena, including fetus development, vascular formation, memory, social behavior and many other phenotypes. There is a huge potential in combining high-throughput assays - including flow cytometry and gene analysis - with in vivo imaging. This can improve our knowledge in both basic and clinical cell biology, and accessing the expression of markers that are relevant in the context of both homeostasis and disease conditions might be instrumental. Here we describe how we generated a novel mouse strain that spontaneously express three different fluorescence markers under control of well-studied receptors (CX3CR1, CCR2 and CD11c) that are involved in a plethora of stages of cell ontogenesis, maturation, migration and behavior. Also, we assess the percentage of the expression and co-expression of each marker under homeostasis conditions, and how these cells behave when a local inflammation is induced in the liver applying a cutting-edge technology to image cells by confocal intravital microscopy.


Assuntos
Antígeno CD11c/análise , Receptor 1 de Quimiocina CX3C/análise , Fígado/citologia , Fagócitos/citologia , Receptores CCR2/análise , Animais , Citometria de Fluxo , Fluorescência , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Fagócitos/metabolismo
3.
Primates ; 59(5): 475-482, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948416

RESUMO

The dominance structure of primate social groups varies widely. In addition to the groups' composition, intrinsic attributes such as sex, body size and life experience are important factors that can affect hierarchical dominance relations. All primates are social animals, and the social environment has a direct influence on the physiological conditions of vital systems such as immunological, reproductive and cardiovascular systems. In this study, we analyze the hierarchical structure of Saimiri collinsi in captivity, including the hierarchical structure type, the influence of individual intrinsic characteristics (sex, age, weight and origin-born in captivity or in the wild) based on the prior-attributes model, the relation between agonistic behavior frequency and hierarchical position, and hierarchy steepness, which represents the dominance gradient. We found that the group order was characterized by a partial hierarchy: a dominance position could be occupied by more than one individual simultaneously, including individuals of both sexes. Intrinsic characteristics had no influence on hierarchical structure, with the exception of the male in the highest hierarchical position, which had a markedly larger body than all other group members. Thus, the prior-attributes model did not apply to hierarchical formation of S. collinsi in captivity. Only the frequency of agonistic behavior of males correlated with their hierarchical position, and they differed from all other group members in their more aggressive behavior. The steepness between adjacent positions along the dominance gradient was significant only between the dominant male and the next individual in the group, with a smooth gradient between the other positions in the rank. As the access to resources is directly related to hierarchical dominance, a smooth dominance gradient is to be expected in species that form very large groups, such as wild Saimiri populations.


Assuntos
Saimiri/fisiologia , Predomínio Social , Animais , Feminino , Masculino
4.
J Contemp Dent Pract ; 16(6): 427-32, 2015 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26323443

RESUMO

AIM: Bacteria levels of necrotic teeth are greatly reduced after endodontic treatment procedures but the presence of persisting microorganisms leads to continuous efforts to develop materials with antimicrobial properties. The purpose of the study was to determine the antimicrobial activity of polyethylenimine (PEI) against common bacteria and yeasts, regarding planktonic cells and biofilm, and to clarify its antimicrobial mechanism of action through flow cytometry. MATERIALS AND METHODS: The antibiofilm and antimicrobial effect of PEI was determined against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Candida albicans strains using reference protocols. The effect of PEI was evaluated regarding adhesion, biofilm formation and biofilm disaggregation. In order to understand PEI cellular effects flow cytometric analysis was performed with different fluorescent markers. RESULTS: It was verified that minimal inhibitory concentrations (MIC) values and minimal lethal concentrations (MLC) obtained for PEI were similar and ranged between 50 and 400 mg/l, proving the microbicidal and fungicidal activity of this compound. Antibiofilm activity was also proved for all the microorganisms. Severe lesion of the membrane and cell depolarization was demonstrated. CONCLUSION: Polyethylenimine showed antimicrobial and antibiofilm activity against microorganisms often associated with apical periodontitis. CLINICAL SIGNIFICANCE: Theoretically, prolonging the antibacterial effects of materials used in endodontics may be interesting to help prevent reinfection and possibly to affect residual bacteria that survived the treatment procedures.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Polietilenoimina/farmacologia , Candida albicans/efeitos dos fármacos , Endodontia/métodos , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos
5.
J Mater Chem B ; 3(9): 1831-1845, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32262256

RESUMO

Biomaterials can still be reinvented to become simple and universal bone regeneration solutions. Following this roadmap, conductive CNT-based "smart" materials accumulate exciting grafting qualities for tuning the in vitro cellular phenotype. Biphasic electrical stimulation of human osteoblastic cells was performed in vitro on either dielectric bioactive bone grafts or conductive CNT-reinforced composites. The efficiency of the electrical stimuli delivery, as well as the effect of stimulation on cellular functions were investigated. Conductive substrates boosted the local culture medium conductivity and the confinement of the exogenous electrical fields. Hence, bone cell proliferation, DNA content and mRNA expression were maximized on the conductive substrates yielding superior stimuli delivering efficiency over dielectric ones. These findings are suggestive that bioactive bone grafts with electrical conductivity are capable of high spatial and temporal control of bone cell stimulation.

6.
J Biomed Mater Res A ; 103(1): 289-99, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24677593

RESUMO

Injectable systems can be used in minimally invasive surgical applications. Although chitosan-glycerophosphate hydrogel systems are biodegradable and biocompatible, the long periods of time required for their effective gelation have severely limited their clinical application. The challenges currently facing researchers in this field are therefore focused on shortening the gelation time and biocompatibility of these materials to develop hydrogels suitable for clinical application. Chitosan and γ-glycidoxypropyltrimethoxysilane (GPTMS) hybrids have recently demonstrated good cytocompatibility with respect to human osteoblastic cells (MG63) and human bone marrow cells. Although these precursor sols could form gels under physiological conditions, they required neutralization with a sodium hydroxide solution. In this study, the chitosan-GPTMS hybrid systems were neutralized with glycerophosphate to prepare injectable hydrogels. The results revealed that the gelation time of the hydrogels could be controlled by the amount of GPTMS in the precursor sols. The in vitro cytocompatibility of the hydrogels were evaluated in terms of the proliferation of MG63 cells cultured either directly onto the hydrogels or indirectly onto the cell culture plate under a hydrogel insert. In the former case, the cells showed good attachment and proliferated for up to 7 days. Similar results were observed in the in direct culture. These results suggest that this new chitosan-GPTMS hydrogel could potentially be used as an injectable biomaterial in clinical applications.


Assuntos
Materiais Biocompatíveis , Quitosana/química , Hidrogéis , Siloxanas/química , Técnicas In Vitro , Espectroscopia de Ressonância Magnética
7.
Int J Med Sci ; 11(10): 979-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25076843

RESUMO

The healing process of the skin is a dynamic procedure mediated through a complex feedback of growth factors secreted by a variety of cells types. Despite the most recent advances in wound healing management and surgical procedures, these techniques still fail up to 50%, so cellular therapies involving mesenchymal stem cells (MSCs) are nowadays a promising treatment of skin ulcers which are a cause of high morbidity. The MSCs modulate the inflammatory local response and induce cell replacing, by a paracrine mode of action, being an important cell therapy for the impaired wound healing. The local application of human MSCs (hMSCs) isolated from the umbilical cord Wharton's jelly together with a poly(vinyl alcohol) hydrogel (PVA) membrane, was tested to promote wound healing in two dogs that were referred for clinical examination at UPVET Hospital, showing non-healing large skin lesions by the standard treatments. The wounds were infiltrated with 1000 cells/µl hMSCs in a total volume of 100 µl per cm(2) of lesion area. A PVA membrane was applied to completely cover the wound to prevent its dehydration. Both animals after the treatment demonstrated a significant progress in skin regeneration with decreased extent of ulcerated areas confirmed by histological analysis. The use of Wharton's jelly MSCs associated with a PVA membrane showed promising clinical results for future application in the treatment of chronic wounds in companion animals and humans.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Geleia de Wharton/citologia , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Cães , Humanos , Cariótipo , Pele/citologia , Cicatrização/fisiologia
8.
Biomed Res Int ; 2014: 153808, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25054129

RESUMO

The treatment of peripheral nerve injuries remains one of the greatest challenges of neurosurgery, as functional recover is rarely satisfactory in these patients. Recently, biodegradable nerve guides have shown great potential for enhancing nerve regeneration. A major advantage of these nerve guides is that no foreign material remains after the device has fulfilled its task, which spares a second surgical intervention. Recently, we studied peripheral nerve regeneration using chitosan-γ-glycidoxypropyltrimethoxysilane (chitosan-GPTMS) porous hybrid membranes. In our studies, these porous membranes significantly improved nerve fiber regeneration and functional recovery in rat models of axonotmetic and neurotmetic sciatic nerve injuries. In particular, the number of regenerated myelinated nerve fibers and myelin thickness were significantly higher in rat treated with chitosan porous hybrid membranes, whether or not they were used in combination with mesenchymal stem cells isolated from the Wharton's jelly of the umbilical cord. In this review, we describe our findings on the use of chitosan-GPTMS hybrids for nerve regeneration.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Regeneração Nervosa , Siloxanas/química , Alicerces Teciduais/química , Animais , Modelos Animais de Doenças , Humanos , Células-Tronco Mesenquimais/citologia , Bainha de Mielina/química , Fibras Nervosas Mielinizadas/metabolismo , Doenças Neurodegenerativas/terapia , Porosidade , Ratos , Nervo Isquiático/patologia , Silanos/química , Cordão Umbilical/citologia
9.
J Endod ; 40(8): 1149-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25069923

RESUMO

INTRODUCTION: The incorporation of quaternary ammonium polyethylenimine (QPEI) nanoparticles into endodontic sealers induces alterations in their structure and surface properties, which may affect the compatibility with the periapical tissues. This work addressed the behavior of human bone cells exposed to extracts from commercial and QPEI containing AH Plus (DeTrey, Konstanz, Germany) and Pulp Canal Sealer EWT (PCS; Kerr Italia Srl, Salerno, Italy). METHODS: Freshly mixed AH Plus and PCS or containing 2% QPEI (0.3 mL spread over the well bottom of a 24-well plate) were extracted with culture medium (1.5 mL for 24 hours at 37°C) and diluted (1:20-1:5000). Osteoblastic or osteoclastic cells were cultured in the presence of QPEI particles (1%-10%) and were exposed to the extracts from unmodified and QPEI containing sealers. RESULTS: QPEI nanoparticles, at 1% and 2%, did not affect cell behavior. On osteoblastic cells, AH Plus and PCS increased DNA at 1:2500 dilution (levels ≤1:100 were cytotoxic). Alkaline phosphatase activity decreased at dilutions ≤1:500. Comparatively, QPEI containing AH Plus increased DNA at 1:2500 and 1:500 dilutions, and QPEI containing PCS induced ALP activity at 1:2500 and 1:500 dilutions. Regarding osteoclastic cells, DNA increased (AH Plus) or was not affected (PCS) at dilutions up to 1:500 and decreased with more concentrated extracts. Tartrate-resistant acid phosphatase activity decreased with dilutions ≤1:500 for both sealers. QPEI containing sealers presented a similar behavior. The sealers affected some intracellular signaling pathways, and QPEI containing sealers further modulate these mechanisms. CONCLUSIONS: QPEI nanoparticles, at 2%, did not affect cell behavior. However, the incorporation of 2% QPEI particles into AH Plus and PCS modulates the proliferation and differentiation of bone cells, depending on the sealer and the cell type, without increasing the sealers' cytotoxicity.


Assuntos
Resinas Epóxi/farmacologia , Nanopartículas , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Polietilenoimina/farmacologia , Compostos de Amônio Quaternário/farmacologia , Materiais Restauradores do Canal Radicular/farmacologia , Cimento de Óxido de Zinco e Eugenol/farmacologia , Fosfatase Ácida/efeitos dos fármacos , Fosfatase Alcalina/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , DNA/efeitos dos fármacos , Humanos , Isoenzimas/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , MAP Quinase Quinase Quinases/antagonistas & inibidores , Teste de Materiais , NF-kappa B/antagonistas & inibidores , Nanopartículas/química , Transdução de Sinais/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
10.
J Endod ; 40(8): 1167-71, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25069926

RESUMO

INTRODUCTION: This study evaluated the antibiofilm effects of 2 endodontic sealers incorporated with quaternary ammonium polyethylenimine (QPEI) nanoparticles at a 2% concentration (w/w). METHODS: The materials tested were AH Plus and Pulp Canal Sealer EWT (PCS) in the commercial unmodified form or containing 2% QPEI. Antibiofilm assays were conducted by using direct-contact and membrane-restricted tests for evaluation of bacterial viability in biofilms grown onto membranes or paper disks and the crystal violet microtiter-plate assay to evaluate the effects of sealer extracts on the biofilm biomass. Two Enterococcus faecalis strains (ATCC and an endodontic isolate) were used. RESULTS: Direct contact and membrane-restricted antibiofilm tests revealed that PCS 2% was the only material to promote total killing of E. faecalis ATCC biofilms. All the materials significantly reduced bacterial counts in E. faecalis ATCC biofilms when compared with the positive control in both tests (P < .05). In the direct test against E. faecalis RW35, PCS 2% was significantly more effective than the other materials and was the only one that showed significantly lower counts than the positive control (P < .05). In the crystal violet assay, only AH Plus 2% presented optical density readings significantly lower than the positive control of the ATCC strain (P < .05). No other significant effects on the biofilm biomass of the 2 E. faecalis strains were observed for any of the sealers tested (P > .05). CONCLUSIONS: Addition of QPEI nanoparticles improved the killing ability of PCS against biofilms of both E. faecalis strains and the effects of AH Plus on the biomass of biofilms from the ATCC strain.


Assuntos
Biofilmes/efeitos dos fármacos , Nanopartículas/química , Polietilenoimina/farmacologia , Compostos de Amônio Quaternário/farmacologia , Materiais Restauradores do Canal Radicular/farmacologia , Carga Bacteriana/efeitos dos fármacos , Técnicas Bacteriológicas/instrumentação , Biomassa , Cavidade Pulpar/microbiologia , Enterococcus faecalis/efeitos dos fármacos , Resinas Epóxi/farmacologia , Filtração/instrumentação , Violeta Genciana , Humanos , Teste de Materiais , Viabilidade Microbiana/efeitos dos fármacos , Cimento de Óxido de Zinco e Eugenol/farmacologia
11.
J Biomater Appl ; 27(2): 201-17, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21602251

RESUMO

A glass-reinforced hydroxyapatite (HA) composite (Bonelike®) was developed for bone grafting. This biomaterial is composed of a modified HA matrix with α- and ß-tricalcium phosphate secondary phases, resulting in higher solubility than single HA type of materials. Several in vitro and in vivo studies demonstrated that Bonelike® has a highly bioactive behavior, which was also confirmed by employing granular forms of this biomaterial in orthopedics and dental applications. However, a fast consolidation vehicle was needed to promote the fixation of Bonelike® granules if applied in larger defects or in unstable sites. Surgical-grade calcium sulfate (CS), which is widely recognized as a well-tolerated and inexpensive bone graft material, was the chosen vehicle to improve the handling characteristics of Bonelike® as it can be used in the form of a powder that is mixed with a liquid to form a paste that sets in situ. After application in non-critical monocortical defects in sheep, histological, and scanning electron microscopy evaluations demonstrated that Bonelike® associated to CS functioned as a very satisfactory scaffold for bone regeneration as it achieved synchronization of the ingrowing bone with biomaterial resorption and subsequent preservation of the bone graft initial volume. Therefore, our results indicate that CS is an effective vehicle for Bonelike® granules as it facilitates their application and does not interfere with their proven highly osteoconductive properties. In the opposite way, the incorporation of Bonelike® improves the bone regeneration capabilities of CS.


Assuntos
Regeneração Óssea , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Durapatita/química , Fêmur/fisiologia , Animais , Substitutos Ósseos/metabolismo , Fosfatos de Cálcio/metabolismo , Durapatita/metabolismo , Fraturas do Fêmur/cirurgia , Fraturas do Fêmur/terapia , Fêmur/lesões , Fêmur/cirurgia , Fêmur/ultraestrutura , Ovinos , Solubilidade , Alicerces Teciduais/química
12.
Acta Biomater ; 8(3): 1137-45, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22178652

RESUMO

It is recognized that the surface roughness affects osteoblastic differentiation, but little information is available regarding its effect on osteoclastogenesis. With this work, the osteoclastogenic behaviour of human peripheral blood mononuclear cells (PBMCs), cultured isolated (1.5×10(6)cellscm(-2)) or co-cultured with human bone marrow cells (hBMCs; 10(3)cellscm(-2)), was assessed on surface-abraded hydroxyapatite disks with three different surface roughnesses (R(a) 0.0437-0.582 µm). Monocultures and co-cultures were performed for 21 days in the absence or presence of recombinant M-CSF and RANKL. Results showed that PBMCs supplemented with M-CSF and RANKL or co-cultured with hBMCs displayed typical osteoclastic features, i.e. multinucleated cells with actin rings, vitronectin and calcitonin receptors, gene expression of TRAP, cathepsin K, carbonic anhydrase 2, c-myc and c-src, TRAP activity and resorbing activity. The osteoclastogenic response increased with surface roughness in PBMCs cultured with M-CSF and RANKL but decreased in PBMCs co-cultured with hBMCs. However, co-cultures supplemented with the osteoclastogenic inducers displayed high and similar levels of osteoclast differentiation in the three tested surfaces. In conclusion, modulation of osteoclast differentiation by surface roughness seemed to be dependent on the mechanisms subjacent to the osteoclastogenic stimulus, i.e. the presence of soluble factors or direct cell-to-cell contacts between osteoblastic and osteoclastic cells.


Assuntos
Diferenciação Celular , Durapatita/química , Leucócitos Mononucleares , Osteoblastos , Osteoclastos , Células-Tronco , Adulto , Antígenos de Diferenciação/biossíntese , Células Cultivadas , Técnicas de Cocultura , Feminino , Regulação da Expressão Gênica , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Masculino , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Propriedades de Superfície
13.
J Biomed Mater Res B Appl Biomater ; 94(2): 337-346, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20574971

RESUMO

Silicon-substituted hydroxyapatite (Si-HA) coatings have been plasma sprayed over titanium substrates (Ti-6Al-4V) aiming to improve the bioactivity of the constructs for bone tissue repair/regeneration. X-ray diffraction analysis of the coatings has shown that, previous to the thermal deposition, no secondary phases were formed due to the incorporation of 0.8 wt % Si into HA crystal lattice. Partial decomposition of hydroxyapatite, which lead to the formation of the more soluble phases of alpha- and beta-tricalcium phosphate and calcium oxide, and increase of amorphization level only occurred following plasma spraying. Human bone marrow-derived osteoblastic cells were used to assess the in vitro biocompatibility of the constructs. Cells attached and grew well on the Si-HA coatings, putting in evidence an increased metabolic activity and alkaline phosphatase expression comparing to control, i.e., titanium substrates plasma sprayed with hydroxyapatite. Further, a trend for increased differentiation was also verified by the upregulation of osteogenesis-related genes, as well as by the augmented deposition of globular mineral deposits within established cell layers. Based on the present findings, plasma spraying of Si-HA coatings over titanium substrates demonstrates improved biological properties regarding cell proliferation and differentiation, comparing to HA coatings. This suggests that incorporation of Si into the HA lattice could enhance the biological behavior of the plasma-sprayed coating.


Assuntos
Regeneração Óssea , Substitutos Ósseos/química , Materiais Revestidos Biocompatíveis/química , Osteoblastos/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Durapatita/química , Humanos , Silício/química , Titânio/química
14.
J Nanosci Nanotechnol ; 9(6): 3714-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19504908

RESUMO

The use of bone grafts is required to restore skeletal integrity and enhance bone healing of large defects in several areas of regenerative medicine, such as: orthopedic and maxillofacial procedures. Some of these bone grafts can be resorbed in a time controlled way, in order to allow the correct process of natural re-construction of the involved bone tissue to occur. The Bonelike graft is a bone substitute that mimics the inorganic composition of bone; this biomaterial was developed and characterized over the last decade. In a granular form, Bonelike has proved its highly bioactive behavior in medical applications, such as; maxillofacial and orthopedics surgery. The clinical applications in maxillary bone defects indicated a good bone bonding between new formed bone and the Bonelike granules. The purpose of this study was to develop a new injectable system for the application of Bonelike using a resorbable vehicle which may be used in minimal invasive surgery. A new hydrogel derived from chitosan and y-glycidoxypropyltrimethoxysilane (GPTMS) was synthesized and characterized. The mixture derived from chitosan and GPTMS existed in sol state at room temperature and formed a hydrogel at 37 degrees C. The degradability of the hydrogel could be controlled by the concentration of chitosan and GPTMS, and the presence the presence of Bonelike did not affect its degradability. The pH changes caused by the degradation of this hydrogel were small, so it is not expected to cause any deleterious effect in vivo conditions.


Assuntos
Materiais Biocompatíveis , Osso e Ossos , Quitosana/química , Hidrogéis/síntese química , Próteses e Implantes , Silicatos/química , Hidrogéis/química , Microscopia Eletrônica de Varredura , Análise Espectral
15.
Tissue Eng Part A ; 14(6): 979-93, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18447635

RESUMO

Poly(lactic-co-glycolic acid) (PLGA) nerve tube guides, made of a novel proportion (90:10) of the two polymers, poly(L-lactide): poly(glycolide) and covered with a neural cell line differentiated in vitro, were tested in vivo for promoting nerve regeneration across a 10-mm gap of the rat sciatic nerve. Before in vivo testing, the PLGA 90:10 tubes were tested in vitro for water uptake and mass loss and compared with collagen sheets. The water uptake of the PLGA tubes was lower, and the mass loss was more rapid and higher than those of the collagen sheets when immersed in phosphate-buffered saline (PBS) solution. The pH values of immersing PBS did not change after soaking the collagen sheets and showed to be around 7.4. On the other hand, the pH values of PBS after soaking PLGA tubes decreased gradually during 10 days reaching values around 3.5. For the in vivo testing, 22 Sasco Sprague adult rats were divided into four groups--group 1: gap not reconstructed; group 2: gap reconstructed using an autologous nerve graft; group 3: gap reconstructed with PLGA 90:10 tube guides; group 4: gap reconstructed with PLGA 90:10 tube guides covered with neural cells differentiated in vitro. Motor and sensory functional recovery was evaluated throughout a healing period of 20 weeks using sciatic functional index, static sciatic index, extensor postural thrust, withdrawal reflex latency, and ankle kinematics. Stereological analysis was carried out on regenerated nerve fibers. Both motor and sensory functions improved significantly in the three experimental nerve repair groups, although the rate and extent of recovery was significantly higher in the group where the gap was reconstructed using the autologous graft. The presence of neural cells covering the inside of the PLGA tube guides did not make any difference in the functional recovery. By contrast, morphometric analysis showed that the introduction of N1E-115 cells inside PLGA 90:10 tube guides led to a significant lower number and size of regenerated nerve fibers, suggesting thus that this approach is not adequate for promoting peripheral nerve repair. Further studies are warranted to assess the role of other cellular systems as a foreseeable therapeutic strategy in peripheral nerve regeneration.


Assuntos
Diferenciação Celular , Ácido Láctico/metabolismo , Regeneração Nervosa , Neurônios/citologia , Ácido Poliglicólico/metabolismo , Nervo Isquiático/patologia , Alicerces Teciduais , Animais , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Doença dos Neurônios Motores/patologia , Doença dos Neurônios Motores/fisiopatologia , Dor/fisiopatologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/fisiopatologia , Água
16.
Microsurgery ; 27(2): 125-37, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17290381

RESUMO

The purpose of this study was to test in vivo two different nerve guides for promoting nerve regeneration across a 10-mm gap of the rat sciatic nerve: 1) one made of PLGA in a novel proportion (90:10) of the two polymers poly(L-lactide):poly(glycolide); 2) another made of (DL-lactide-epsilon-caprolactone) copolyester (Neurolac) tube, by comparing its healing efficacy with that of the more traditional methods of end-to-end nerve suture and autologous graft. Motor and sensory functional recovery were assessed throughout the healing period of 20 weeks, and the repaired nerves were processed for morphological and histomorphometrical analysis. Both motor and sensory functions improved significantly in all experimental nerve repaired groups. At the end of the 20-week follow-up, the end-to-end group showed better recovery of motor function when compared with the groups treated with guiding tubes. However, at this time point, the level of motor function in the Neurolac(R) and PLGA groups was similar to the one of the graft group. Nociception function also recovered faster in the end-to-end group compared with the Neurolac(R) and PLGA groups, and in this case, recovery was also delayed in the graft group. At the end of follow-up, nociception was similar in all experimental groups. Morphological and histomorphometrical analysis showed that axon regeneration occurred in both PLGA and Neurolac(R) experimental groups, with no significant differences in the total number of regenerated fibers, but disclosed a different pattern of degradation of the two types of tubes with larger biodegradation of PLGA material by the end of 20 weeks. These results suggest that both types of biomaterials are a good substrate for preparing tubular nerve guides, and their different pattern of degradation does not seem to influence the degree of nerve regeneration.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Caproatos/uso terapêutico , Ácido Láctico/uso terapêutico , Lactonas/uso terapêutico , Regeneração Nervosa/efeitos dos fármacos , Ácido Poliglicólico/uso terapêutico , Polímeros/uso terapêutico , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/efeitos dos fármacos , Animais , Seguimentos , Imuno-Histoquímica , Regeneração Nervosa/fisiologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Nervo Isquiático/fisiologia , Nervo Isquiático/ultraestrutura
17.
Biomed Mater Eng ; 17(1): 39-52, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17264386

RESUMO

The purpose of this study was to test in vivo two different nerve guides, one of PLGA made of a novel proportion (90:10) of the two polymers, Poly(L-lactide):Poly(glycolide), with (DL-lactide-epsilon-caprolactone) copolyester (Neurolac) tube, in promoting nerve regeneration across a 10 mm-gap of the rat sciatic nerve. Finally, end-to-end coaptation was performed. Motor and sensory functional recovery was assessed throughout the healing period of 20 weeks and the repaired nerves were processed for morphological analysis. Both motor and sensory functions improved significantly in all experimental nerve repair groups, although the rate and extent of recovery was significantly higher in the end-to-end group. No significant differences were detected in the comparison between the two types of tubes. Compatible with results of functional tests, morphological analysis showed that axon regeneration occurred in both PLGA and Neurolac experimental groups but disclosed a different pattern of degradation of the two types of tubes with larger biodegradation of PLGA material by the end of 20 weeks. These results suggest that both types of biomaterial are a good substrate for preparing tubular nerve guides and the different pattern of degradation does not seem to influence the degree of nerve regeneration.


Assuntos
Implantes Absorvíveis , Regeneração Tecidual Guiada/métodos , Regeneração Nervosa , Nervo Isquiático/fisiologia , Animais , Ácido Láctico/química , Masculino , Atividade Motora , Medição da Dor , Poliésteres/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/ultraestrutura
18.
J Biomed Mater Res A ; 78(2): 352-63, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16646067

RESUMO

The normal intersurface forces between nanosized probe tips functionalized with COO(-)-terminated alkanethiol self-assembling monolayers and dense, polycrystalline silicon-substituted synthetic hydroxyapatite (SiHA) and phase pure hydroxyapatite (HA) were measured via a nanomechanical technique called chemically specific high-resolution force spectroscopy. A significantly larger van der Waals interaction was observed for the SiHA compared to HA; Hamaker constants (A) were found to be A(SiHA) = 35 +/- 27 zJ and A(HA) = 13 +/- 12 zJ. Using the Derjaguin-Landau-Verwey-Overbeek approximation, which assumes linear additivity of the electrostatic double layer and van der Waals components, and the nonlinear Poisson-Boltzmann surface charge model for electrostatic double-layer forces, the surface charge per unit area, sigma (C/m(2)), was calculated as a function of position for specific nanosized areas within individual grains. SiHA was observed to be more negatively charged than HA with sigma(SiHA) = -0.024 +/- 0.013 C/m(2), two times greater than sigma(HA) = -0.011 +/- 0.006 C/m(2). Additionally, SiHA was found to have increased surface adhesion (0.7 +/- 0.3 nN) compared to HA (0.5 +/- 0.3 nN). The characterization of the nanoscale variations in surface forces of SiHA and HA will enable an improved understanding of the initial stages of bone-biomaterial bonding.


Assuntos
Durapatita/farmacologia , Silício/farmacologia , Materiais Biocompatíveis , Adesão Celular/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Nanoestruturas , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Estresse Mecânico
19.
J Biomed Mater Res A ; 69(4): 670-9, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15162409

RESUMO

Recent histological studies have demonstrated that the substitution of silicate ions into hydroxyapatite (HA) significantly increases the rate of bone apposition to HA implants. The enhanced bioactivity of silicon-substituted HA (Si-HA) over pure HA has been attributed to the effect of silicate ions in accelerating dissolution. In the present study, high-resolution transmission electron microscopy (HR-TEM) was employed to compare dissolution of HA and Si-HA in an acellular simulated body fluid (SBF) to dissolution in an in vivo model. HR-TEM observations confirmed a difference in morphology of apatite precipitates in vivo and in SBF: apatite deposits were platelike in vivo and nodular in SBF. Compositional mapping suggested that preferential dissolution of silicon from the implant promotes the nucleation of carbonate apatite around the implant. The in vivo findings illustrated an absence of dissolution at the bone-HA or Si-HA interface, whereas dissolution was extensive from within the implant. The amount of dissolution in acellular SBF was similar to dissolution from within the implant, although the site at which the dissolution nucleates was different: dissolution predominates at the crystallite surfaces in SBF, whereas grain boundary dissolution predominates in vivo. These findings suggest that proteins in the in vivo milieu modify the processes of dissolution from the implant.


Assuntos
Materiais Biocompatíveis , Durapatita/química , Silício , Durapatita/síntese química , Microscopia Eletrônica , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...