Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Rev. bras. entomol ; 68(1): e20230077, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1559499

RESUMO

ABSTRACT The 'Tahiti' acid lime and orange trees are hosts of 'Candidatus Liberibacter asiaticus' (CLas), the pathogen associated with the severe Asian form of huanglongbing (HLB), the most devasting citrus disease. They are also hosts of the vector of CLas, the Asian citrus psyllid (ACP) Diaphorina citri Kuwayama. Relatively small numbers of lime trees occur in gardens and small orchards near large commercial 'Valencia' sweet orange orchards in Brazil. Applications of insecticides to suppress populations of ACP on the lime trees are usually nil or less frequent than in the orange orchards. Abundance of the psyllid on lime trees may therefore increase the risk of CLas spreading to the orchards. Because the abundance of the psyllid is influenced by the suitability of the trees as hosts, we compared reproductive potential of the insect on the two hosts in a controlled environment chamber (CEC) and in a greenhouse (GH). Daily temperature and relative humidity averaged 22ºC and 60% inside the CEC and 24°C and 70% inside the GH. Two pairs of adult male and female psyllids were caged for 3 days on new shoots and the fecundity and durations of development and survival of eggs and nymphs evaluated. Overall, acid 'Tahiti' was 3.5 times less suitable to ACP than 'Valencia'. Fecundity and survival of nymphs were 27% and 59% lower, and the life cycle 34% longer on 'Tahiti' than on 'Valencia'. Potential impacts of the results on CLas spread and HLB control are discussed.

2.
Pharmaceutics ; 15(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38004578

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder, most known as ulcerative colitis (UC) and Crohn's disease (CD), that affects the gastrointestinal tract (GIT), causing considerable symptoms to millions of people around the world. Conventional therapeutic strategies have limitations and side effects, prompting the exploration of innovative approaches. Probiotics, known for their potential to restore gut homeostasis, have emerged as promising candidates for IBD management. Probiotics have been shown to minimize disease symptoms, particularly in patients affected by UC, opening important opportunities to better treat this disease. However, they exhibit limitations in terms of stability and targeted delivery. As several studies demonstrate, the encapsulation of the probiotics, as well as the synthetic drug, into micro- and nanoparticles of organic materials offers great potential to solve this problem. They resist the harsh conditions of the upper GIT portions and, thus, protect the probiotic and drug inside, allowing for the delivery of adequate amounts directly into the colon. An overview of UC and CD, the benefits of the use of probiotics, and the potential of micro- and nanoencapsulation technologies to improve IBD treatment are presented. This review sheds light on the remarkable potential of nano- and microparticles loaded with probiotics as a novel and efficient strategy for managing IBD. Nonetheless, further investigations and clinical trials are warranted to validate their long-term safety and efficacy, paving the way for a new era in IBD therapeutics.

3.
Front Plant Sci ; 13: 1005557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544882

RESUMO

Introduction: The severe Asian form of huanglongbing (HLB), a vascular disease associated with the phloem-limited bacterium 'Candidatus Liberibacter asiaticus', is transmitted by the Asian citrus psyllid (ACP) Diaphorina citri. Disease impacts are known for sweet oranges and acid limes but not lemons. Methods: In a five-year study (2017-2021) we compared yield and fruit quality between naturally-infected and healthy 5-yr-old trees of Sicilian lemon 'Femminello', and shoot phenology on both lemon and 'Valencia' orange, both grafted onto 'Swingle' citrumelo, grown in southeastern São Paulo State, Brazil. HLB severity (percentage of tree canopy area with HLB symptoms) was assessed every 3-4 months, fruit yield and quality in May (2017 to 2019) or June/July (2020-2021), and vegetative and reproductive shoots fortnightly on 50-cm-long branches. The development of ACP on one-year-old seedlings of five lemon varieties, 'Tahiti' acid lime, 'Valencia' orange, and orange jasmine was evaluated. Results: Symptoms increased from 11% in 2017 to 64% in 2021, and a monomolecular model estimated 10 years for symptoms to occupy >90% of the tree canopy. On average, production of trees with symptom on 20%, 50% or 80% of the canopy respectively dropped by 18%, 38%, and 53% compared to healthy trees. Fruits of symptomatic branches of lemons were 4.22% lighter and the number of dropped fruits did not correlate with symptom severity. Flushing on symptomatic branches started earlier by 15 to 55 days as compared to the healthy branches of lemon and orange. On diseased trees, vegetative and reproductive shoots respectively increased by 24.5% and 17.5% on lemon and by 67.2% and 70.6% on sweet orange, but fruit set was reduced by 12.9% and 19.7% on lemon and orange trees, respectively. ACP reproduced similarly on all tested plants. Discussion: The fast symptom progress, significant yield reduction, and earlier flushing on diseased trees, providing conditions highly favorable for the pathogen to spread, reinforce the need of prompt diseased tree removal and frequent ACP preventive control to manage HLB in lemons as in any other citrus crop.

4.
Front Plant Sci ; 13: 1009350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160987

RESUMO

Huanglongbing (HLB), the most destructive citrus disease, is associated with unculturable, phloem-limited Candidatus Liberibacter species, mainly Ca. L. asiaticus (Las). Las is transmitted naturally by the insect Diaphorina citri. In a previous study, we determined that the Oceanian citrus relatives Eremocitrus glauca, Microcitrus warburgiana, Microcitrus papuana, and Microcitrus australis and three hybrids among them and Citrus were full-resistant to Las. After 2 years of evaluations, leaves of those seven genotypes remained Las-free even with their susceptible rootstock being infected. However, Las was detected in their stem bark above the scion-rootstock graft union. Aiming to gain an understanding of the full-resistance phenotype, new experiments were carried out with the challenge-inoculated Oceanian citrus genotypes through which we evaluated: (1) Las acquisition by D. citri fed onto them; (2) Las infection in sweet orange plants grafted with bark or budwood from them; (3) Las infection in sweet orange plants top-grafted onto them; (4) Las infection in new shoots from rooted plants of them; and (5) Las infection in new shoots of them after drastic back-pruning. Overall, results showed that insects that fed on plants from the Oceanian citrus genotypes, their canopies, new flushes, and leaves from rooted cuttings evaluated remained quantitative real-time polymerase chain reaction (qPCR)-negative. Moreover, their budwood pieces were unable to infect sweet orange through grafting. Furthermore, sweet orange control leaves resulted infected when insects fed onto them and graft-receptor susceptible plants. Genomic and morphological analysis of the Oceanian genotypes corroborated that E. glauca and M. warburgiana are pure species while our M. australis accession is an M. australis × M. inodora hybrid and M. papuana is probably a M. papuana × M. warburgiana hybrid. E. glauca × C. sinensis hybrid was found coming from a cross between E. glauca and mandarin or tangor. Eremocitrus × Microcitrus hybrid is a complex admixture of M. australasica, M. australis, and E. glauca while the last hybrid is an M. australasica × M. australis admixture. Confirmation of consistent full resistance in these genotypes with proper validation of their genomic parentages is essential to map properly genomic regions for breeding programs aimed to generate new Citrus-like cultivars yielding immunity to HLB.

5.
Phytopathology ; 111(12): 2367-2374, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33938771

RESUMO

A protocol to successfully transmit the huanglongbing (HLB) pathogen, 'Candidatus Liberibacter asiaticus', between citrus plants by using the Asian citrus psyllid (ACP) and an alternative way to help growers control ACP are proposed. Best results were obtained when pathogen acquisition by adults reared on fully symptomatic 'Ca. Liberibacter asiaticus'-positive plants, latency, and inoculation occurred at ambient air temperatures ranging from 24 to 28°C and when a single infective adult ACP was confined for 7 days on soft, newly developing vegetative shoots (stages v2 to v4). No infection resulted from confinement of infective ACP adults on mature leaves (stage v6). Under the described conditions, single ACP adults could successfully transmit 'Ca. Liberibacter asiaticus' to an average of 56.5% (35 to 83%) of plantlets with v2 to v4 shoots growing in 0.3-liter tubes and to 80.5% (76 to 86%) of plants with v2 to v4 shoots growing in 4.7-liter pots. The use of single insects and plantlets reduces labor, space, and other resources necessary to undertake transmission tests. It also reduces time needed for transmission studies and should help accelerate research on HLB. The results were used to develop an index for favorability to infection (IFI) to determine orchard vulnerabilities to 'Ca. Liberibacter asiaticus'. The IFI is based on the heterogeneous population of new shoots that occurs on tree canopies and may offer alternative or complementary alternatives to the laborious and costly insect surveys currently used in most instances to determine threshold levels for insecticide applications.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Liberibacter , Doenças das Plantas
6.
Phytopathology ; 111(10): 1711-1719, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33724870

RESUMO

The phloem-limited 'Candidatus Liberibacter asiaticus' (Las) causes huanglongbing, a destructive citrus disease. Graft-inoculated potted plants were used to assess Las speed of movement in phloem in the greenhouse, and the impacts of temperature on plant colonization in growth-chamber experiments. For assessment of Las speed, plants were inoculated at the main stem and assessed over time by quantitative PCR (qPCR) or symptoms at various distances from the inoculum. For colonization, the plants were inoculated in one of two opposite top branches, maintained at from 8 to 20°C, from 18 to 30°C, or from 24 to 38°C daily range, and assessed by qPCR of samples taken from noninoculated shoots. For all experiments, frequencies of Las-positive sites were submitted to analysis of variance and binomial generalized linear model and logistic regression analyses. Probabilities of detecting Las in greenhouse plants were functions of time and distance from the inoculation site, which resulted in 2.9 and 3.8 cm day-1 average speed of movement. In growth chambers, the temperature impacted plant colonization by Las, new shoot emission, and symptom expression. After a 7-month exposure time, Las was absent in all new shoots in the cooler environment (average three per plant), and present in 70% at the milder environment (six shoots, severe symptoms) and 25% in the warmer environment (eight shoots, no visible symptoms). Temperature of 25.7°C was the optimum condition for plant colonization. This explains the higher impact and incidence of huanglongbing disease during the winter months or regions of milder climates in Brazil.


Assuntos
Citrus , Brasil , Liberibacter , Doenças das Plantas
7.
Plant Dis ; 105(1): 34-42, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33201785

RESUMO

'Candidatus Liberibacter asiaticus' (Las) is an unculturable, phloem-limited, insect-transmitted bacterium associated with the Asiatic form of huanglongbing (HLB), the most destructive citrus disease. In Asia and the Americas, it is transmitted by the Asian citrus psyllid (Diaphorina citri Kuwavama). Despite considerable research, little is known about the processes involved in plant infection and colonization by Las. This study was conducted to determine whether the basal portion (below girdling) of the plant is an important route for Las to move laterally from a point of inoculation on a branch to pathogen-free branches elsewhere in the canopy, and to quantify the influence of actively growing tissues on vertical upward (acropetally) or downward (basipetally) movement of Las. Nongirdled and fully or partially girdled stems of potted plants of 'Pera' sweet orange, graft-inoculated above or below girdling, were sampled in distinct regions and assessed by qPCR, 6 months postinoculation. Las invaded all regions of partially and nongirdled plants but remained restricted to the inoculated regions of fully girdled plants, evidence that in planta bacterium movement is limited to the phloem. In fully girdled plants, starch accumulated above the girdling site, probably because of changes in flow of phloem sap. To study the influence of actively growing tissues, inoculated 'Valencia' sweet orange plants were kept intact or were top- or root-pruned to force production of new tissues, and sampled at 15-day intervals. Las migrated rapidly and most predominantly toward newly developing root and leaf tissues. The rapid and predominant movement of Las to newly developed shoots and roots would explain failures of canopy heat treatments and pruning to cure HLB-affected trees, and reinforces the need to protect rapidly growing new shoots from feeding by D. citri in order to minimize transmission and spread of the pathogen by the vector within and between orchards.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Liberibacter , Doenças das Plantas
8.
PLoS One ; 15(5): e0233014, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32433657

RESUMO

Citrus trees produce flushes throughout the year, but there are no criteria established for a precise shoot monitoring in orchards under tropical climate. Methods for quantification of flush dynamics would be useful for horticultural and pest management studies because different insect vectors feed and reproduce on flushes. We estimated the minimum number and distribution of trees for sampling and determined the flushing pattern over time in 'Valencia Late' orange trees grafted onto 'Swingle' citrumelo rootstock. Shoots within a square frame (0.25 m2) on two sides of the canopy were counted and classified by their phenological stage. The minimum number of samples was estimated using the mean number of shoots and area under the flush shoot dynamics (AUFSD). The temporal and spatial distribution analysis was performed by Taylor's power law and by multiple correspondence analysis (MCA). Additionally, a shoot maturity index (SMI) based on visual qualitative assessment of flushes is proposed. Considering the mean number of shoots, it was necessary to sample two sides of 16 trees to reach a relative sampling error (Er) of 25%, whereas by the AUFSD, only five trees were necessary to reach an Er of 10%. Flushes were predominantly randomly distributed over time and space. Testing eight transects, sampled trees should be distributed throughout the block, avoiding sampling concentration in a certain area. MCA showed that the west side and the upper sampling positions of trees were more likely to be associated with younger shoots. AUFSD and the evaluation of both sides of the canopy yielded a smaller number of trees to be assessed. The SMI was a reliable metric to estimate the shoot phenology of orange trees, and correlated well (R2 > 70%) with the mean number of shoots within the square frame. Therefore, SMI has the potential to make shoot monitoring in the field more practical.


Assuntos
Citrus/crescimento & desenvolvimento , Animais , Brasil , Citrus/parasitologia , Citrus sinensis/crescimento & desenvolvimento , Citrus sinensis/parasitologia , Produtos Agrícolas/crescimento & desenvolvimento , Vetores de Doenças , Monitorização de Parâmetros Ecológicos , Interações Hospedeiro-Patógeno , Controle de Pragas/métodos , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Brotos de Planta/crescimento & desenvolvimento , Tamanho da Amostra , Clima Tropical , Tempo (Meteorologia)
9.
Front Plant Sci ; 11: 617664, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488659

RESUMO

Huanglongbing (HLB) is the most destructive, yet incurable disease of citrus. Finding sources of genetic resistance to HLB-associated 'Candidatus Liberibacter asiaticus' (Las) becomes strategic to warrant crop sustainability, but no resistant Citrus genotypes exist. Some Citrus relatives of the family Rutaceae, subfamily Aurantioideae, were described as full-resistant to Las, but they are phylogenetically far, thus incompatible with Citrus. Partial resistance was indicated for certain cross-compatible types. Moreover, other genotypes from subtribe Citrinae, sexually incompatible but graft-compatible with Citrus, may provide new rootstocks able to restrict bacterial titer in the canopy. Use of seedlings from monoembryonic species and inconsistencies in previous reports likely due to Las recalcitrance encouraged us to evaluate more accurately these Citrus relatives. We tested for Las resistance a diverse collection of graft-compatible Citrinae species using an aggressive and consistent challenge-inoculation and evaluation procedure. Most Citrinae species examined were either susceptible or partially resistant to Las. However, Eremocitrus glauca and Papua/New Guinea Microcitrus species as well as their hybrids and those with Citrus arose here for the first time as full-resistant, opening the way for using these underutilized genotypes as Las resistance sources in breeding programs or attempting using them directly as possible new Las-resistant Citrus rootstocks or interstocks.

10.
Phytopathology ; 110(3): 567-573, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31750792

RESUMO

Xylella fastidiosa comprises a diverse group of xylem-limited, insect-transmitted bacterial pathogens. In Brazil, the citrus variegated chlorosis (CVC) and coffee stem atrophy (CSA) diseases are caused by X. fastidiosa subspecies pauca transmitted by common insect vectors. No simple protocol allowing strain discrimination exists, making epidemiological studies, which are important for devising control measures, difficult to undertake. Here, we show that both strains can easily be distinguished based on the pattern of leaf symptoms that they induce on pin prick-inoculated tobacco seedlings, namely small orange lesions and large necrotic lesions induced by the CVC and CSA strains, respectively. These differential responses allowed us to investigate whether mixed strain infections would occur in citrus or coffee trees in the field. Seedlings were individually inoculated with X. fastidiosa colonies recovered from citrus or coffee plants from various locations at three different times. No mixed infections were detected. In two experiments, the citrus and coffee strains infected only their original hosts as well as tobacco. The usefulness of this tobacco bioassay as a tool to study X. fastidiosa spread was demonstrated. It provided evidence that, over the years, the CVC and CSA pathogens have remained limited to their original hosts, despite crop proximity and the presence of sharpshooter vectors that favor transmission of the bacteria to and between both host species.


Assuntos
Citrus , Xylella , Animais , Atrofia , Brasil , Café , Doenças das Plantas , Nicotiana
11.
Plant Dis ; 104(1): 239-245, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31710571

RESUMO

Citrus variegated chlorosis (CVC) disease, caused by the xylem-limited and insect-transmitted bacterium Xylella fastidiosa, has caused severe losses in orange production in Brazil. Disease control requires insecticide applications, tree removal, and pruning of symptomatic branches. Pruning success has been erratic, especially in areas of high disease incidence. In this work, in planta X. fastidiosa distribution and the effectiveness of severe pruning procedures for curing diseased adult trees were investigated. Most sampled upper parts of the trees contained X. fastidiosa, but at higher frequencies in symptomatic branches. Removal of all main branches (decapitation) was not effective and revealed a 20 to 30% incidence of latent infections. Trunk decapitation resulted in a higher number of healthy scions but killed 10 to 30% of the remaining trunks. Removal of all scion and grafting the newly sprouted shoots of 'Rangpur' lime (Citrus limonia Osbeck) or 'Cleopatra' (Citrus reshni Hort. ex Tan.) rootstocks with healthy buds allowed production of fast-growing and productive new scions that remained free from CVC for at least 2 years in four locations. With this method, highly affected trees do not need to be fully removed and the costs involved in this practice and in young tree acquisition and plantings are circumvented; therefore, it is a feasible option for less technically inclined small growers in Brazil.


Assuntos
Citrus sinensis , Citrus , Doenças das Plantas , Xylella , Brasil , Citrus/microbiologia , Doenças das Plantas/prevenção & controle , Xylella/fisiologia
12.
Phytopathology ; 109(12): 2064-2073, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31425000

RESUMO

Murraya paniculata and Swinglea glutinosa are aurantioid hosts of the Asian citrus psyllid (ACP) Diaphorina citri, the principal vector of 'Candidatus Liberibacter asiaticus' (Las). Las is the pathogen associated with huanglongbing (HLB), the Asian form of which is the most devastating disease of Citrus species and cultivars (Rutaceae: Aurantioideae). M. paniculata is a common ornamental and S. glutinosa is grown as an ornamental, a citrus rootstock, and a hedgerow fence plant. Because of the uncertain status of these plants as reservoirs of Las, a series of cross-inoculation bioassays were carried out in different environments, using infected Valencia sweet orange (Citrus × aurantium) infected shoot tops as a source of inoculum and D. citri nymphs and adults reared on M. paniculata and S. glutinosa to inoculate pathogen-free Valencia orange plantlets. In contrast to sweet orange, Las was more unevenly distributed and reached much lower titers in M. paniculata and S. glutinosa. Infections in M. paniculata and S. glutinosa were also transient. Very few insects that successfully acquired Las from M. paniculata and S. glutinosa were able to transmit the pathogen to healthy citrus. Transmission rates were low from M. paniculata (1.0%) and S. glutinosa (2.0%) and occurred only in a controlled environment highly favorable to Las and ACP using 10-day-old adults that completed their life cycle on Las-positive plants. Our study showed that in HLB-endemic areas, M. paniculata and S. glutinosa can be deemed as epidemiologically dead-end hosts for Las and are not important alternative hosts of the pathogen for transmission to citrus. However, under a combination of conditions highly favorable to Las infection and transmission and in the absence of effective quarantine procedures, these plants could eventually serve as carriers of Las to regions currently free from HLB.


Assuntos
Citrus , Hemípteros , Murraya , Rhizobiaceae , Rutaceae , Animais , Citrus/microbiologia , Hemípteros/microbiologia , Interações Hospedeiro-Patógeno , Murraya/microbiologia , Doenças das Plantas/microbiologia , Rutaceae/microbiologia
13.
Pest Manag Sci ; 75(7): 1911-1920, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30565375

RESUMO

BACKGROUND: 'Candidatus Liberibacter asiaticus' is transmitted by Diaphorina citri, an insect with a wide range of hosts in Rutaceae. Species related to Citrus occur in Brazilian forests where they may serve as hosts for psyllids and infested citrus orchards. RESULTS: The suitability of plants as hosts of D. citri was classified into four groups. Group I (high suitability): Citrus × aurantium 'Valencia', 'Citrus limonia', Murraya paniculata (syn. Murraya exotica L.) (Aurantioideae: Aurantieae) and Bergera koenigii (Aurantioideae: Clauseneae). Group II (intermediate to low suitability): Citrus (Poncirus) trifoliata 'Pomeroy', Citrus wintersii, Swinglea glutinosa (Aurantieae) and Clausena lansium (Clauseneae). Group III (not suitable): Aegle marmelos, Atalantia buxifolia, Citrus ('Microcitrus') sp. (Aurantieae) and Helietta apiculata (Amyridoideae). Group IV (non-hosts): Glycosmis pentaphylla (Clauseneae), Balfourodendron riedelianum, Casimiroa edulis, Esenbeckia febrifuga, Esenbeckia leiocarpa, Metrodorea stipularis, Zanthoxylum rhoifolium (Amyridoideae) and Dictyoloma vandellianum (Cneoroideae). Insects survived longer on newly differentiated leaves compared with fully expanded soft leaves. Psyllids either did not develop or did not survive for long on most Group IV species, all of which, with the exception of G. pentaphylla, occur naturally in Brazilian forests. CONCLUSION: Citrus relatives occurring in forests near citrus orchards are not suitable hosts of D. citri and, therefore, do not contribute to huanglongbing spread. © 2018 Society of Chemical Industry.


Assuntos
Hemípteros , Rutaceae/parasitologia , Animais , Brasil , Insetos Vetores , Doenças das Plantas/microbiologia , Folhas de Planta/parasitologia , Rhizobiaceae
14.
PLoS One ; 13(1): e0190563, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29304052

RESUMO

The biology and behaviour of the psyllid Diaphorina citri Kuwayama (Hemiptera: Sternorrhyncha: Liviidae), the major insect vector of bacteria associated with huanglongbing, have been extensively studied with respect to host preferences, thermal requirements, and responses to visual and chemical volatile stimuli. However, development of the psyllid in relation to the ontogeny of immature citrus flush growth has not been clearly defined or illustrated. Such information is important for determining the timing and frequency of measures used to minimize populations of the psyllid in orchards and spread of HLB. Our objective was to study how flush ontogeny influences the biotic potential of the psyllid. We divided citrus flush growth into six stages within four developmental phases: emergence (V1), development (V2 and V3), maturation (V4 and V5), and dormancy (V6). Diaphorina citri oviposition and nymph development were assessed on all flush stages in a temperature controlled room, and in a screen-house in which ambient temperatures varied. Our results show that biotic potential of Diaphorina citri is not a matter of the size or the age of the flushes (days after budbreak), but the developmental stage within its ontogeny. Females laid eggs on flush V1 to V5 only, with the time needed to commence oviposition increasing with the increasing in flush age. Stages V1, V2 and V3 were most suitable for oviposition, nymph survival and development, and adult emergence, which showed evidence of protandry. Flush shoots at emerging and developmental phases should be the focus of any chemical or biological control strategy to reduce the biotic potential of D. citri, to protect citrus tree from Liberibacter infection and to minimize HLB dissemination.


Assuntos
Citrus/microbiologia , Hemípteros/fisiologia , Animais , Feminino , Insetos Vetores , Oviposição
15.
Plant Dis ; 101(3): 409-413, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30677345

RESUMO

Huanglongbing (HLB) is a difficult-to-control and highly destructive citrus disease that, in Brazil, is associated mainly with the bacterium 'Candidatus Liberibacter asiaticus' transmitted by the psyllid Diaphorina citri. The aim of this study was to improve our understanding of the 'Ca. L. asiaticus' infection process by exposing excised, fully expanded, immature citrus leaves in 50-ml Falcon tubes to one, four, or eight adults from a 'Ca. L. asiaticus'-exposed colony for 1-, 3-, 7-, or 15-day periods for access to inoculation (IAP). The leaves were incubated at 26°C for 1, 3, 7, 15, and 21 days (incubation period [IP]). Infection frequencies and 'Ca. L. asiaticus' titers were assessed by quantitative polymerase chain reaction (qPCR). 'Ca. L. asiaticus' infection was a function of leaf age, number of insects, IAP, and IP. In general, higher infection rates were observed on younger leaves inoculated with higher numbers of insects and after longer IAP and IP. The immature excised leaf method allowed determination of 3 to 7 days as the range of time required by 'Ca. L. asiaticus' to reach qPCR detectable levels. Even though leaf survival could be prolonged by the maintenance of a branch segment at the base of the leaf petiole, leaf degradation, visible after about 15 days IP, did not allow observation of the entire infection process which, in the intact plant, culminates with the appearance of the blotch mottling symptom on leaf blades.

16.
Plant Dis ; 101(4): 583-590, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30677355

RESUMO

The major citrus area of Brazil occupies near 450,000 ha between the Triângulo Mineiro (TM) region of Minas Gerais State and the south of São Paulo State (SPS). Significant climatic variation occurs between regions which could affect huanglongbing (HLB) progress, which is lower in TM. To investigate this possibility, young sweet orange shoots were sampled periodically over 2 years to determine 'Candidatus Liberibacter asiaticus' titers in naturally infected trees in orchards in Analândia, central SPS, and Frutal and Comendador Gomes, within TM. Data-loggers recorded local temperature and relative humidity hourly. In the laboratory, five 'Ca. L. asiaticus'-free Diaphorina citri adults were placed on each sampled shoot for 48 h to feed and acquire the pathogen. Shoots and insects were individually analyzed by quantitative polymerase chain reaction to determine 'Ca. L. asiaticus' titers. The incidence of 'Ca. L. asiaticus'-positive shoots, 'Ca. L. asiaticus' titers, and acquisition rates were lower for shoots from Comendador Gomes than those from Frutal or Analândia. Stronger association was observed between 'Ca. L. asiaticus' titers and the number of hours below 15°C (h < 15°C) or above 30°C (h > 30°C), and cumulative rainfall registered during the 15 days prior to sampling of shoots on each occasion. 'Ca. L. asiaticus' titers associated positively with h < 15°C and rainfall and negatively with h > 30°C. The slower spread and lower incidence of HLB in TM may be related to lower incidences of 'Ca. L. asiaticus'-positive young shoots and lower titers of 'Ca. L. asiaticus' in the same shoots as a consequence of the warmer and drier conditions.

17.
J Microbiol Methods ; 92(1): 79-89, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23123161

RESUMO

The xylem-limited, Gram-negative, fastidious plant bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC), a destructive disease affecting approximately half of the citrus plantations in the State of São Paulo, Brazil. The disease was recently found in Central America and is threatening the multi-billion U.S. citrus industry. Many strains of X. fastidiosa are pathogens or endophytes in various plants growing in the U.S., and some strains cross infect several host plants. In this study, a TaqMan-based assay targeting the 16S rDNA signature region was developed for the identification of X. fastidiosa at the species level. Another TaqMan-based assay was developed for the specific identification of the CVC strains. Both new assays have been systematically validated in comparison with the primer/probe sets from four previously published assays on one platform and under similar PCR conditions, and shown to be superior. The species specific assay detected all X. fastidiosa strains and did not amplify any other citrus pathogen or endophyte tested. The CVC-specific assay detected all CVC strains but did not amplify any non-CVC X. fastidiosa nor any other citrus pathogen or endophyte evaluated. Both sets were multiplexed with a reliable internal control assay targeting host plant DNA, and their diagnostic specificity and sensitivity remained unchanged. This internal control provides quality assurance for DNA extraction, performance of PCR reagents, platforms and operators. The limit of detection for both assays was equivalent to 2 to 10 cells of X. fastidiosa per reaction for field citrus samples. Petioles and midribs of symptomatic leaves of sweet orange harbored the highest populations of X. fastidiosa, providing the best materials for detection of the pathogen. These new species specific assay will be invaluable for molecular identification of X. fastidiosa at the species level, and the CVC specific assay will be very powerful for the specific identification of X. fastidiosa strains that cause citrus variegated chlorosis.


Assuntos
Técnicas Bacteriológicas/métodos , Citrus/microbiologia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Xylella/classificação , Xylella/isolamento & purificação , Técnicas Bacteriológicas/normas , Brasil , América Central , Primers do DNA/genética , Sondas de Oligonucleotídeos/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Sensibilidade e Especificidade , Estados Unidos , Xylella/genética
18.
Appl Environ Microbiol ; 74(12): 3690-701, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18424531

RESUMO

Xylella fastidiosa is a vector-borne, plant-pathogenic bacterium that causes disease in citrus (citrus variegated chlorosis [CVC]) and coffee (coffee leaf scorch [CLS]) plants in Brazil. CVC and CLS occur sympatrically and share leafhopper vectors; thus, determining whether X. fastidiosa isolates can be dispersed from one crop to another and cause disease is of epidemiological importance. We sought to clarify the genetic and biological relationships between CVC- and CLS-causing X. fastidiosa isolates. We used cross-inoculation bioassays and microsatellite and multilocus sequence typing (MLST) approaches to determine the host range and genetic structure of 26 CVC and 20 CLS isolates collected from different regions in Brazil. Our results show that citrus and coffee X. fastidiosa isolates are biologically distinct. Cross-inoculation tests showed that isolates causing CVC and CLS in the field were able to colonize citrus and coffee plants, respectively, but not the other host, indicating biological isolation between the strains. The microsatellite analysis separated most X. fastidiosa populations tested on the basis of the host plant from which they were isolated. However, recombination among isolates was detected and a lack of congruency among phylogenetic trees was observed for the loci used in the MLST scheme. Altogether, our study indicates that CVC and CLS are caused by two biologically distinct strains of X. fastidiosa that have diverged but are genetically homogenized by frequent recombination.


Assuntos
Citrus/microbiologia , Café/microbiologia , Variação Genética , Doenças das Plantas/microbiologia , Xylella/classificação , Xylella/genética , Brasil , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Genótipo , Repetições de Microssatélites , Dados de Sequência Molecular , Filogenia , Recombinação Genética , Análise de Sequência de DNA , Xylella/isolamento & purificação , Xylella/fisiologia
19.
Rev. baiana saúde pública ; 32(1): 104-110, jan.-abr. 2008.
Artigo em Português | LILACS | ID: lil-506865

RESUMO

Trata-se de um relato de experiência dos residentes do Instituto de Saúde Coletiva (ISC) no processo de sensibilização da comunidade e dos profissionais de saúde para a formação do Conselho Local de Saúde (CLS) de uma Unidade de Saúde da Família (USF) no Subúrbio Ferroviário do município de Salvador- BA, em 2006. O objetivo deste artigo é socializar a experiência do processo de implantação do CLS, destacando os desafios e a importância da atuação coletiva neste processo. Por meio da observação participante e da análise documentalcaracterizou-se o contexto da área de abrangência da referida unidade e a estratégia de implantação de CLS proposta pela Assessoria de Gestão Participativa da Secretaria Municipal de Saúde de Salvador (AGEP-SMS). Logo após, desenvolveu-se uma estratégia de sensibilização da comunidade e dos profissionais, com a realização de oito oficinas. Cumprindo os passos propostos pela SMS, criou-se a comissão eleitoral para formação do CLS, em seguida realizou-se a eleição das entidades dos usuários e em 12 de junho de 2007 o CLS tomou posse. Percebeu-se com a experiência a necessidade e a importância do papel dos profissionais de saúde em fomentar a participaçção popular nos serviços locais de saúde como forma de fortalecer a construção do SUS.


Assuntos
Humanos , Conselhos de Saúde , Participação da Comunidade , Controle Social Formal
20.
Mol Cell Probes ; 19(3): 173-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15797817

RESUMO

Symptoms of huanglongbing (HLB), one of the most serious diseases of citrus in Asia and Africa, have been noticed in March 2004 in the Araraquara region of São Paulo State, Brazil. HLB has not been reported previously from America. The causal HLB bacteria, Candidatus Liberibacter africanus in Africa and Candidatus Liberibacter asiaticus in Asia, can be detected in symptomatic citrus leaves by PCR amplification of their 16S rDNA with previously described primers. When this technique was applied to 43 symptomatic leaf samples from the Araraquara region, all PCR reactions were negative. This suggested that a new pathogen, not detected by the above primers, could be involved in HLB in the State of São Paulo. Indeed, by using universal primers for amplification of bacterial 16S rDNA, a new liberibacter species, Candidatus Liberibacter americanus, has recently been identified. Specific primers for PCR amplification of the 16S rDNA of Ca. L. americanus have been selected. Using these primers, the new liberibacter could be detected in 214 symptomatic leaf samples tested. The leaves of two additional samples were infected with Candidatus Liberibacter asiaticus, and two further samples contained both Ca. L. americanus and Ca. L. asiaticus. The samples came from 47 farms in 35 municipalities. The psyllid vector of Ca. L. asiaticus, Diaphorina citri, is established in South, Central, and North America (Florida and Texas). Ca. L. americanus could be detected by PCR in several batches of D. citri psyllids collected on symptomatic sweet orange trees infected with Ca. L. americanus, strongly suggesting that D. citri is the vector of Ca. L. americanus. The results reported here confirm the presence of HLB in the State of São Paulo. Ca. L. americanus is the most widely distributed pathogen.


Assuntos
Citrus/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação , Sequência de Bases , Brasil , DNA Ribossômico/genética , Eletroforese em Gel de Ágar , Dados de Sequência Molecular , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase , Rhizobiaceae/classificação , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...