Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fertil Steril ; 111(6): 1186-1193, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30922639

RESUMO

OBJECTIVE: To investigate the levels of DNA methylation in the KvDMR1 (KvLQT1 differentially methylated region 1) in embryonic and extra-embryonic tissues. DESIGN: Cross-sectional study. SETTING: University medical center and clinical hospital. PATIENT(S): Embryonic and/or extraembryonic tissues (umbilical cord, chorionic villus, chorion, decidua, and/or amnion) collected from 27 first-trimester pregnancies (up to 12 weeks of gestation, single embryos) from elective abortions, extravillous trophoblasts (EVTs) from the top of individual chorionic villi, and chorionic villi from 10 normal full-term placentas collected after birth. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): DNA methylation of the KvDMR1 region evaluated using quantitative analysis of DNA methylation followed by real-time polymerase chain reaction (qAMP) and bisulfite sequencing (bis-seq) analysis. RESULT(S): The results showed variability in KvDMR1 DNA methylation in different tissues from the same pregnancy. The average of DNA methylation was not different between the embryo, umbilical cord, amnion, and chorionic villi, despite the relatively low level of methylation observed in the amnion (33.50% ± 14.48%). Chorionic villi from term placentas showed a normal methylation pattern at KvDMR1 (42.60% ± 6.08%). The normal methylation pattern at KvDMR1 in chorionic villi (as well as in EVTs) from first-trimester placentas was confirmed by bis-seq. CONCLUSION(S): Our results highlight an existing heterogeneity in DNA methylation of the KvDMR1 region during first trimester and a consistent hypomethylation in the amnion in this period of gestation.


Assuntos
Metilação de DNA , Epigênese Genética , Heterogeneidade Genética , Primeiro Trimestre da Gravidez/genética , Âmnio/química , Córion/química , Estudos Transversais , Embrião de Mamíferos/química , Feminino , Humanos , Placenta/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Gravidez , Cordão Umbilical/química
2.
PLoS One ; 11(4): e0154108, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27100087

RESUMO

The supernumerary chromosome 21 in Down syndrome differentially affects the methylation statuses at CpG dinucleotide sites and creates genome-wide transcriptional dysregulation of parental alleles, ultimately causing diverse pathologies. At present, it is unknown whether those effects are dependent or independent of the parental origin of the nondisjoined chromosome 21. Linkage analysis is a standard method for the determination of the parental origin of this aneuploidy, although it is inadequate in cases with deficiency of samples from the progenitors. Here, we assessed the reliability of the epigenetic 5mCpG imprints resulting in the maternally (oocyte)-derived allele methylation at a differentially methylated region (DMR) of the candidate imprinted WRB gene for asserting the parental origin of chromosome 21. We developed a methylation-sensitive restriction enzyme-specific PCR assay, based on the WRB DMR, across single nucleotide polymorphisms (SNPs) to examine the methylation statuses in the parental alleles. In genomic DNA from blood cells of either disomic or trisomic subjects, the maternal alleles were consistently methylated, while the paternal alleles were unmethylated. However, the supernumerary chromosome 21 did alter the methylation patterns at the RUNX1 (chromosome 21) and TMEM131 (chromosome 2) CpG sites in a parent-of-origin-independent manner. To evaluate the 5mCpG imprints, we conducted a computational comparative epigenomic analysis of transcriptome RNA sequencing (RNA-Seq) and histone modification expression patterns. We found allele fractions consistent with the transcriptional biallelic expression of WRB and ten neighboring genes, despite the similarities in the confluence of both a 17-histone modification activation backbone module and a 5-histone modification repressive module between the WRB DMR and the DMRs of six imprinted genes. We concluded that the maternally inherited 5mCpG imprints at the WRB DMR are uncoupled from the parental allele expression of WRB and ten neighboring genes in several tissues and that trisomy 21 alters DNA methylation in parent-of-origin-dependent and -independent manners.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Síndrome de Down/genética , Impressão Genômica , Alelos , Linhagem Celular , DNA/genética , Epigenômica/métodos , Feminino , Histonas/metabolismo , Humanos , Oócitos/metabolismo , Pais , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...