Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Antiviral Res ; 194: 105168, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34437912

RESUMO

Infection caused by Mayaro virus (MAYV) is responsible for causing acute nonspecific fever, in which the majority of patients develop incapacitating and persistent arthritis/arthralgia. Mayaro fever is a neglected and underreported disease without treatment or vaccine, which has gained attention in recent years after the competence of Aedes aegypti to transmit MAYV was observed in the laboratory, coupled with the fact that cases are being increasingly reported outside of endemic forest areas, calling attention to the potential of an urban cycle arising in the near future. Thus, to mitigate the lack of information about the pathological aspects of MAYV, we previously described the involvement of oxidative stress in MAYV infection in cultured cells and in a non-lethal mouse model. Additionally, we showed that silymarin, a natural compound, attenuated MAYV-induced oxidative stress and inhibited MAYV replication in cells. The antioxidant and anti-MAYV effects prompted us to determine whether silymarin could also reduce oxidative stress and MAYV replication after infection in an immunocompetent animal model. We show that infected mice exhibited reduced weight gain, hepatomegaly, splenomegaly, anaemia, thrombocytopenia, leukopenia, increased liver transaminases, increased pro-inflammatory cytokines and liver inflammation, increased oxidative damage biomarkers, and reduced antioxidant enzyme activity. However, in animals infected and treated with silymarin, all these parameters were reversed or significantly improved, and the detection of viral load in the liver, spleen, brain, thigh muscle, and footpad was significantly reduced. This work reinforces the potent hepatoprotective, antioxidant, anti-inflammatory, and antiviral effects of silymarin against MAYV infection, demonstrating its potential against Mayaro fever disease.


Assuntos
Infecções por Alphavirus/tratamento farmacológico , Alphavirus/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Antivirais/farmacologia , Silimarina/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia/métodos
2.
J. physiol. biochem ; 69(4): 811-820, dic. 2013.
Artigo em Inglês | IBECS | ID: ibc-121639

RESUMO

The present study investigated the underlying mechanism associated with the hypocholesterolemic activity of beta-carotene by examining its effects on the serum lipid profile, fecal cholesterol excretion, and gene expression of the major receptors, enzymes, and transporters involved in cholesterol metabolism. Female Fischer rats were divided into three groups and were fed either a control or a hypercholesterolemic diet supplemented or not supplemented with 0.2 % beta-carotene. After 6 weeks of feeding, blood, livers, and feces were collected for analysis, and quantitative real-time polymerase chain reaction (qRT-PCR) was performed. Dietary supplementation with 0.2 % beta-carotene decreased serum total cholesterol, non-HDL cholesterol, the atherogenic index, and hepatic total lipid and cholesterol contents. These changes were accompanied by an increase in the total lipid and cholesterol contents excreted in the feces. The qRT-PCR analyses demonstrated that the hypercholesterolemic diet promoted a decrease in the gene expression of sterol regulatory element-binding protein 2, 3-hydroxy-3-methylglutaryl CoA reductase, and low-density lipoprotein receptor and an increase in the gene expression of peroxisome proliferator-activated receptor á and cholesterol-7a-hydroxylase. The expression of these genes and gene expression of ATP-binding cassette subfamily G transporters 5and 8 were unaffected by beta-carotene supplementation. In conclusion, the decrease in serum cholesterol and the elevation of fecal cholesterol obtained following beta-carotene administration indicate that this substance may decrease cholesterol absorption in the intestine and increase cholesterol excretion into the feces without a direct effect on the expression of cholesterol metabolism genes (AU)


Assuntos
Animais , Ratos , beta Caroteno/farmacocinética , Anticolesterolemiantes/farmacocinética , Hipercolesterolemia/tratamento farmacológico , Suplementos Nutricionais , Substâncias Protetoras/farmacocinética , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...