Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(54): 35032-35036, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36540259

RESUMO

Human serum albumin (HSA) has been shown to be a promising tumor targeting vector and target for generating theranostics by bioconjugation. Unstable chemical conjugation to HSA via a cysteine (Cys34) by reversible Michael additions is most commonly applied for this purpose. Herein, we describe utilization of our recently developed site-selective irreversible SNAr conjugation to Cys34 using perfluorobenzene sulfonyl derivatives to introduce a trans-cyclooctene (TCO) handle. The TCO could then be bioorthogonally ligated within minutes through an inverse-electron demand Diels-Alder reaction (IEDDA) to tetrazines (Tzs) containing a radionuclide. The methodology opens up a wide range of chemistries including pretargeting, 'click-to-release' tumor selective drug delivery or ultra-fast and complete conjugation of any drug. The proof-of-principle study demonstrated that the conjugation chemistry is feasible, robust and easy to carry out, being promising for pretargeted imaging and therapy studies as well as selective drug delivery using HSA.

2.
Chemistry ; 28(61): e202201847, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35851967

RESUMO

Combining nanotechnology and bioorthogonal chemistry for theranostic strategies offers the possibility to develop next generation nanomedicines. These materials are thought to increase therapeutic outcome and improve current cancer management. Due to their size, nanomedicines target tumors passively. Thus, they can be used for drug delivery purposes. Bioorthogonal chemistry allows for a pretargeting approach. Higher target-to-background drug accumulation ratios can be achieved. Pretargeting can also be used to induce internalization processes or trigger controlled drug release. Colloidal gold nanoparticles (AuNPs) have attracted widespread interest as drug delivery vectors within the last decades. Here, we demonstrate for the first time the possibility to successfully ligate AuNPs in vivo to pretargeted monoclonal antibodies. We believe that this possibility will facilitate the development of AuNPs for clinical use and ultimately, improve state-of-the-art patient care.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Coloide de Ouro , Química Click , Linhagem Celular Tumoral , Anticorpos Monoclonais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...