Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3558-3562, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085664

RESUMO

We analyze dog genotypes (i.e., positions of dog DNA sequences that often vary between different dogs) in order to predict the corresponding phenotypes (i.e., unique observed characteristics). More specifically, given chromosome data from a dog, we aim to predict the breed, height, and weight. We explore a variety of linear and non-linear classification and regression techniques to accomplish these three tasks. We also investigate the use of a neural network (both in linear and non-linear modes) for breed classification and compare the performance to traditional statistical methods. We show that linear methods generally outperform or match the performance of non-linear methods for breed classification. However, we show that the reverse is true for height and weight regression. Finally, we evaluate the results of all of these methods based on the number of input features used in the analysis. We conduct experiments using different fractions of the full genomic sequences, resulting in input sequences ranging from 20 SNPs to ∼200k SNPs. In doing so, we explore the impact of using a very limited number of SNPs for prediction. Our experiments demonstrate that these phenotypes in dogs can be predicted with as few as 0.5% of randomly selected SNPs (i.e., 992 SNPs) and that dog breeds can be classified with 50% balanced accuracy with as few as 0.02% SNPs (i.e., 40 SNPs).


Assuntos
Genômica , Polimorfismo de Nucleotídeo Único , Animais , Cães , Genótipo , Redes Neurais de Computação , Fenótipo
2.
Viruses ; 14(1)2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-35062267

RESUMO

BACKGROUND: Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is neither always accessible nor easy to perform in children. We aimed to propose a machine learning model to assess the need for a SARS-CoV-2 test in children (<16 years old), depending on their clinical symptoms. METHODS: Epidemiological and clinical data were obtained from the REDCap® registry. Overall, 4434 SARS-CoV-2 tests were performed in symptomatic children between 1 November 2020 and 31 March 2021, 784 were positive (17.68%). We pre-processed the data to be suitable for a machine learning (ML) algorithm, balancing the positive-negative rate and preparing subsets of data by age. We trained several models and chose those with the best performance for each subset. RESULTS: The use of ML demonstrated an AUROC of 0.65 to predict a COVID-19 diagnosis in children. The absence of high-grade fever was the major predictor of COVID-19 in younger children, whereas loss of taste or smell was the most determinant symptom in older children. CONCLUSIONS: Although the accuracy of the models was lower than expected, they can be used to provide a diagnosis when epidemiological data on the risk of exposure to COVID-19 is unknown.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Adolescente , COVID-19/epidemiologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Aprendizado de Máquina , Masculino , Modelos Estatísticos , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...