Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895375

RESUMO

In Drosophila , two interacting adhesion protein families, Dprs and DIPs, coordinate the assembly of neural networks. While intercellular DIP/Dpr interactions have been well characterized, DIPs and Dprs are often co-expressed within the same cells, raising the question as to whether they also interact in cis . We show, in cultured cells and in vivo, that DIP-α and DIP-δ can interact in cis with their ligands, Dpr6/10 and Dpr12, respectively. When co-expressed in cis with their cognate partners, these Dprs regulate the extent of trans binding, presumably through competitive cis interactions. We demonstrate the neurodevelopmental effects of cis inhibition in fly motor neurons and in the mushroom body. We further show that a long disordered region of DIP-α at the C-terminus is required for cis but not trans interactions, likely because it alleviates geometric constraints on cis binding. Thus, the balance between cis and trans interactions plays a role in controlling neural development.

2.
Elife ; 82019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31210127

RESUMO

Cephalopod mollusks evolved numerous anatomical novelties, including arms and tentacles, but little is known about the developmental mechanisms underlying cephalopod limb evolution. Here we show that all three axes of cuttlefish limbs are patterned by the same signaling networks that act in vertebrates and arthropods, although they evolved limbs independently. In cuttlefish limb buds, Hedgehog is expressed anteriorly. Posterior transplantation of Hedgehog-expressing cells induced mirror-image limb duplications. Bmp and Wnt signals, which establish dorsoventral polarity in vertebrate and arthropod limbs, are similarly polarized in cuttlefish. Inhibition of Bmp2/4 dorsally caused ectopic expression of Notum, which marks the ventral sucker field, and ectopic sucker development. Cuttlefish also show proximodistal regionalization of Hth, Exd, Dll, Dac, Sp8/9, and Wnt expression, which delineates arm and tentacle sucker fields. These results suggest that cephalopod limbs evolved by parallel activation of a genetic program for appendage development that was present in the bilaterian common ancestor.


Assuntos
Cefalópodes/genética , Extremidades/crescimento & desenvolvimento , Proteínas Hedgehog/genética , Moluscos/genética , Animais , Cefalópodes/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Moluscos/crescimento & desenvolvimento , Organogênese/genética , Filogenia , Vertebrados/genética , Vertebrados/crescimento & desenvolvimento
3.
Nature ; 533(7601): 86-9, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27111511

RESUMO

The evolution of novel cell types led to the emergence of new tissues and organs during the diversification of animals. The origin of the chondrocyte, the cell type that synthesizes cartilage matrix, was central to the evolution of the vertebrate endoskeleton. Cartilage-like tissues also exist outside the vertebrates, although their relationship to vertebrate cartilage is enigmatic. Here we show that protostome and deuterostome cartilage share structural and chemical properties, and that the mechanisms of cartilage development are extensively conserved--from induction of chondroprogenitor cells by Hedgehog and ß-catenin signalling, to chondrocyte differentiation and matrix synthesis by SoxE and SoxD regulation of clade A fibrillar collagen (ColA) genes--suggesting that the chondrogenic gene regulatory network evolved in the common ancestor of Bilateria. These results reveal deep homology of the genetic program for cartilage development in Bilateria and suggest that activation of this ancient core chondrogenic network underlies the parallel evolution of cartilage tissues in Ecdysozoa, Lophotrochozoa and Deuterostomia.


Assuntos
Condrogênese/genética , Sequência Conservada/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/genética , Invertebrados/embriologia , Invertebrados/genética , Filogenia , Animais , Cartilagem/anatomia & histologia , Cartilagem/embriologia , Cartilagem/metabolismo , Condrócitos/citologia , Decapodiformes/citologia , Decapodiformes/embriologia , Decapodiformes/genética , Decapodiformes/metabolismo , Colágenos Fibrilares/genética , Redes Reguladoras de Genes , Proteínas Hedgehog/metabolismo , Invertebrados/citologia , Invertebrados/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Vertebrados/anatomia & histologia , Vertebrados/genética , beta Catenina/metabolismo
4.
Proc Biol Sci ; 282(1808): 20150698, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25948691

RESUMO

The segmental architecture of the arthropod head is one of the most controversial topics in the evolutionary developmental biology of arthropods. The deutocerebral (second) segment of the head is putatively homologous across Arthropoda, as inferred from the segmental distribution of the tripartite brain and the absence of Hox gene expression of this anterior-most, appendage-bearing segment. While this homology statement implies a putative common mechanism for differentiation of deutocerebral appendages across arthropods, experimental data for deutocerebral appendage fate specification are limited to winged insects. Mandibulates (hexapods, crustaceans and myriapods) bear a characteristic pair of antennae on the deutocerebral segment, whereas chelicerates (e.g. spiders, scorpions, harvestmen) bear the eponymous chelicerae. In such hexapods as the fruit fly, Drosophila melanogaster, and the cricket, Gryllus bimaculatus, cephalic appendages are differentiated from the thoracic appendages (legs) by the activity of the appendage patterning gene homothorax (hth). Here we show that embryonic RNA interference against hth in the harvestman Phalangium opilio results in homeonotic chelicera-to-leg transformations, and also in some cases pedipalp-to-leg transformations. In more strongly affected embryos, adjacent appendages undergo fusion and/or truncation, and legs display proximal defects, suggesting conservation of additional functions of hth in patterning the antero-posterior and proximo-distal appendage axes. Expression signal of anterior Hox genes labial, proboscipedia and Deformed is diminished, but not absent, in hth RNAi embryos, consistent with results previously obtained with the insect G. bimaculatus. Our results substantiate a deep homology across arthropods of the mechanism whereby cephalic appendages are differentiated from locomotory appendages.


Assuntos
Aracnídeos/genética , Proteínas de Artrópodes/genética , Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Animais , Aracnídeos/embriologia , Proteínas de Artrópodes/metabolismo , Extremidades/embriologia , Caranguejos Ferradura/embriologia , Caranguejos Ferradura/genética , Insetos/embriologia , Insetos/genética , Dados de Sequência Molecular , Interferência de RNA , Escorpiões/embriologia , Escorpiões/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...