Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Children (Basel) ; 11(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38397312

RESUMO

Diagnostic reference levels (DRLs) are a pivotal strategy to be implemented since pediatric interventional cardiology procedures are increasing. This work aimed to propose an initial set of Brazilian DRLs for pediatric interventional diagnostic and therapeutic (D&T) procedures. A retrospective study was carried out in four Brazilian states, distributed across the three regions of the country. Data were collected from pediatric patients undergoing cardiac interventional procedures (CIPs), including their age and anthropometric characteristics, and at least four parameters (number of images, exposure time, air kerma-area product-PKA, and cumulative air kerma). Data from 279 patients undergoing CIPs were gathered (147 diagnostic and 132 therapeutic procedures). There were no significant differences in exposure time and the number of images between the D&T procedures. A wide range of PKA was observed when the therapeutic procedures were compared to diagnostics for all age groups. There were significant differences between the D&T procedures, whether grouping data by patient weight or age. In terms of cumulative air kerma, it was noted that no value exceeded the level to trigger a monitoring process for patients. This study shows that it is possible to adopt them as the first proposal to establish national DRLs considering pediatric patient groups.

2.
Front Cell Dev Biol ; 8: 635, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850790

RESUMO

The neural crest (NC) is a transient multipotent cell population that originates in the dorsal neural tube. Cells of the NC are highly migratory, as they travel considerable distances through the body to reach their final sites. Derivatives of the NC are neurons and glia of the peripheral nervous system (PNS) and the enteric nervous system as well as non-neural cells. Different signaling pathways triggered by Bone Morphogenetic Proteins (BMPs), Fibroblast Growth Factors (FGFs), Wnt proteins, Notch ligands, retinoic acid (RA), and Receptor Tyrosine Kinases (RTKs) participate in the processes of induction, specification, cell migration and neural differentiation of the NC. A specific set of signaling pathways and transcription factors are initially expressed in the neural plate border and then in the NC cell precursors to the formation of cranial nerves. The molecular mechanisms of control during embryonic development have been gradually elucidated, pointing to an important role of transcriptional regulators when neural differentiation occurs. However, some of these proteins have an important participation in malformations of the cranial portion and their mutation results in aberrant neurogenesis. This review aims to give an overview of the role of cell signaling and of the function of transcription factors involved in the specification of ganglia precursors and neurogenesis to form the NC-derived cranial nerves during organogenesis.

3.
Birth Defects Res ; 112(8): 584-632, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31926062

RESUMO

The neural crest (NC), discovered by Wilhelm His 150 years ago, gives rise to a multipotent migratory embryonic cell population that generates a remarkably diverse and important array of cell types during the development of the vertebrate embryo. These cells originate in the neural plate border (NPB), which is the ectoderm between the neural plate and the epidermis. They give rise to the neurons and glia of the peripheral nervous system, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies are a class of congenital diseases resulting from the abnormal induction, specification, migration, differentiation or death of NC cells (NCCs) during embryonic development and have an important medical and societal impact. In general, congenital defects affect an appreciable percentage of newborns worldwide. Some of these defects are caused by teratogens, which are agents that negatively impact the formation of tissues and organs during development. In this review, we will discuss the teratogens linked to the development of many birth defects, with a strong focus on those that specifically affect the development of the NC, thereby producing neurocristopathies. Although increasing attention is being paid to the effect of teratogens on embryonic development in general, there is a strong need to critically evaluate the specific role of these agents in NC development. Therefore, increased understanding of the role of these factors in NC development will contribute to the planning of strategies aimed at the prevention and treatment of human neurocristopathies, whose etiology was previously not considered.


Assuntos
Crista Neural , Teratogênicos , Diferenciação Celular , Desenvolvimento Embrionário , Humanos , Recém-Nascido , Neurogênese , Teratogênicos/toxicidade
4.
Arch Microbiol ; 201(2): 235-244, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30478727

RESUMO

Yeasts population associated with grapes from Northwest Argentina, a region with a significant vine-growing increase over the past years, was evaluated. Ten species of non-Saccharomyces yeasts were identified from four grape varieties (Malbec, Merlot, Syrah and Torrontes) being Hanseniaspora uvarum the dominant species. Typing of isolates revealed genetic variability within Hanseniaspora genus and also high variability was observed according to their oenological characteristics. Based on the oenological properties, the most adequate strains as starter cultures were H. uvarum HuT7, HuMe15, HuS16, H. vineae HvT-mc1 and Metschnikowia pulcherrima MpT2/MpT3. These selected yeasts exhibited moderate resistance to SO2, reduced values of volatile acidity, null or low production of H2S, high levels of enzymes related to aroma and did not produce killer toxins. Further studies using mixed cultures of these non-Saccharomyces strains and S. cerevisiae are needed to validate the contribution of selected indigenous yeasts on wine organoleptic characteristics.


Assuntos
Vitis/microbiologia , Leveduras/isolamento & purificação , Argentina , Saccharomyces cerevisiae , Vinho , Leveduras/classificação , Leveduras/genética , Leveduras/metabolismo
5.
Dev Biol ; 444 Suppl 1: S110-S143, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29802835

RESUMO

The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.


Assuntos
Desenvolvimento Embrionário/fisiologia , Crista Neural/embriologia , Crista Neural/fisiopatologia , Animais , Padronização Corporal/fisiologia , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Ectoderma , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Melanócitos/citologia , Crista Neural/citologia , Sistema Nervoso Periférico/embriologia , Vertebrados/embriologia
6.
Int J Dev Biol ; 61(1-2): 5-15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28287247

RESUMO

Neural crest cells (NCCs) are a multipotent, migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. The trunk neural crest has long been considered of particular significance. First, it has been held that the trunk neural crest has a morphogenetic role, acting to coordinate the development of the peripheral nervous system, secretory cells of the endocrine system and pigment cells of the skin. Second, the trunk neural crest additionally has skeletal potential. However, it has been demonstrated that a key role of the trunk neural crest streams is to organize the innervation of the intestine. Although trunk NCCs have a limited capacity for self-renewal, sometimes they become neural-crest-derived tumor cells and reveal the fact that that NCCs and tumor cells share the same molecular machinery. In this review we describe the routes taken by trunk NCCs and consider the signals and cues that pattern these trajectories. We also discuss recent advances in the characterization of the properties of trunk NCCs for various model organisms in order to highlight common themes. Finally, looking to the future, we discuss the need to translate the wealth of data from animal studies to the clinical area in order to develop treatments for neural crest-related human diseases.


Assuntos
Movimento Celular/fisiologia , Sistema Nervoso Entérico/citologia , Crista Neural/citologia , Neurogênese/fisiologia , Animais , Sistema Nervoso Entérico/fisiologia , Humanos , Crista Neural/fisiologia
7.
Dev Dyn ; 243(4): 527-40, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24357413

RESUMO

BACKGROUND: The neural crest is a transient multipotent migratory cell population unique to vertebrates. These cells undergo an epithelial-to-mesenchymal transition and migrate extensively through the embryo. They differentiate into numerous diverse derivatives including the peripheral nervous system, melanocytes,and craniofacial cartilages. The development of the neural crest is mediated by complex interactions of multiple signals and transcription factors. The kinesin Eg5 is a plus end-directed microtubule-based motor protein that is essential for bipolar spindle formation during mitosis and meiosis, axon growth, and mammal embryonic development. RESULTS: We analyzed in detail the expression pattern of eg5 and established that it is expressed at the prospective neural fold, in the premigratory and migratory neural crest. Functional analysis revealed that in Xenopus, early embryogenesis eg5 function is required during neural crest induction, specification, and maintenance. eg5 is also required during neural crest migration and for derivatives formation. Moreover, we demonstrated a hierarchical relationship with the Indian Hedgehog signaling pathway. CONCLUSIONS: Our results show that eg5 is essential for the specification and maintenance of neural crest progenitors during Xenopus early embryogenesis rather than cell proliferation and survival.


Assuntos
Proliferação de Células , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Cinesinas/biossíntese , Crista Neural/embriologia , Proteínas de Xenopus/biossíntese , Animais , Sobrevivência Celular/fisiologia , Embrião não Mamífero/citologia , Mitose/fisiologia , Crista Neural/citologia , Xenopus laevis
8.
Dev Biol ; 364(2): 99-113, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22309705

RESUMO

Neural crest induction is the result of the combined action at the neural plate border of FGF, BMP, and Wnt signals from the neural plate, mesoderm and nonneural ectoderm. In this work we show that the expression of Indian hedgehog (Ihh, formerly named Banded hedgehog) and members of the Hedgehog pathway occurs at the prospective neural fold, in the premigratory and migratory neural crest. We performed a functional analysis that revealed the requirement of Ihh signaling in neural crest development. During the early steps of neural crest induction loss of function experiments with antisense morpholino or locally grafted cyclopamine-loaded beads suppressed the expression of early neural crest markers concomitant with the increase in neural and epidermal markers. We showed that changes in Ihh activity produced no alterations in either cell proliferation or apoptosis, suggesting that this signal involves cell fate decisions. A temporal analysis showed that Hedgehog is continuously required not only in the early and late specification but also during the migration of the neural crest. We also established that the mesodermal source of Ihh is important to maintain specification and also to support the migratory process. By a combination of embryological and molecular approaches our results demonstrated that Ihh signaling drives in the migration of neural crest cells by autocrine or paracrine mechanisms. Finally, the abrogation of Ihh signaling strongly affected only the formation of cartilages derived from the neural crest, while no effects were observed on melanocytes. Taken together, our results provide insights into the role of the Ihh cell signaling pathway during the early steps of neural crest development.


Assuntos
Movimento Celular , Proteínas Hedgehog/fisiologia , Crista Neural/crescimento & desenvolvimento , Proteínas de Xenopus/fisiologia , Xenopus laevis/embriologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Biomarcadores/análise , Proliferação de Células/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Melanócitos/efeitos dos fármacos , Melanócitos/fisiologia , Morfolinos/farmacologia , Crista Neural/efeitos dos fármacos , Transdução de Sinais , Alcaloides de Veratrum/farmacologia , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA