Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(19): e113880, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37602956

RESUMO

Dermal Fibroblast Progenitors (DFPs) differentiate into distinct fibroblast lineages during skin development. However, the epigenetic mechanisms that regulate DFP differentiation are not known. Our objective was to use multimodal single-cell approaches, epigenetic assays, and allografting techniques to define a DFP state and the mechanism that governs its differentiation potential. Our initial results indicated that the overall transcription profile of DFPs is repressed by H3K27me3 and has inaccessible chromatin at lineage-specific genes. Surprisingly, the repressive chromatin profile of DFPs renders them unable to reform the skin in allograft assays despite their multipotent potential. We hypothesized that chromatin derepression was modulated by the H3K27me3 demethylase, Kdm6b/Jmjd3. Dermal fibroblast-specific deletion of Kdm6b/Jmjd3 in mice resulted in adipocyte compartment ablation and inhibition of mature dermal papilla functions, confirmed by additional single-cell RNA-seq, ChIP-seq, and allografting assays. We conclude that DFPs are functionally derepressed during murine skin development by Kdm6b/Jmjd3. Our studies therefore reveal a multimodal understanding of how DFPs differentiate into distinct fibroblast lineages and provide a novel publicly available multiomics search tool.


Assuntos
Cromatina , Histonas , Animais , Camundongos , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Diferenciação Celular/genética , Desmetilação , Fibroblastos/metabolismo
2.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945417

RESUMO

Dermal Fibroblast Progenitors (DFPs) differentiate into distinct fibroblast lineages during skin development. However, the mechanisms that regulate lineage commitment of naive dermal progenitors to form niches around the hair follicle, dermis, and hypodermis, are unknown. In our study, we used multimodal single-cell approaches, epigenetic assays, and allografting techniques to define a DFP state and the mechanisms that govern its differentiation potential. Our results indicate that the overall chromatin profile of DFPs is repressed by H3K27me3 and has inaccessible chromatin at lineage specific genes. Surprisingly, the repressed chromatin profile of DFPs renders them unable to reform skin in allograft assays despite their multipotent potential. Distinct fibroblast lineages, such as the dermal papilla and adipocytes contained specific chromatin profiles that were de-repressed during late embryogenesis by the H3K27-me3 demethylase, Kdm6b/Jmjd3. Tissue-specific deletion of Kdm6b/Jmjd3 resulted in ablating the adipocyte compartment and inhibiting mature dermal papilla functions in single-cell-RNA-seq, ChIPseq, and allografting assays. Altogether our studies reveal a mechanistic multimodal understanding of how DFPs differentiate into distinct fibroblast lineages, and we provide a novel multiomic search-tool within skinregeneration.org.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...