Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Vaccines (Basel) ; 12(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38675738

RESUMO

Cancer vaccines present a promising avenue for treating immune checkpoint blockers (ICBs)-refractory patients, fostering immune responses to modulate the tumor microenvironment. We revisit a phase I/II trial using Tumor Antigen-Presenting Cells (TAPCells) (NCT06152367), an autologous antigen-presenting cell vaccine loaded with heat-shocked allogeneic melanoma cell lysates. Initial findings showcased TAPCells inducing lysate-specific delayed-type hypersensitivity (DTH) reactions, correlating with prolonged survival. Here, we extend our analysis over 15 years, categorizing patients into short-term (<36 months) and long-term (≥36 months) survivors, exploring novel associations between clinical outcomes and demographic, genetic, and immunologic parameters. Notably, DTHpos patients exhibit a 53.1% three-year survival compared to 16.1% in DTHneg patients. Extended remissions are observed in long-term survivors, particularly DTHpos/M1cneg patients. Younger age, stage III disease, and moderate immune events also benefit short-term survivors. Immunomarkers like increased C-type lectin domain family 2 member D on CD4+ T cells and elevated interleukin-17A were detected in long-term survivors. In contrast, toll-like receptor-4 D229G polymorphism and reduced CD32 on B cells are associated with reduced survival. TAPCells achieved stable long remissions in 35.2% of patients, especially M1cneg/DTHpos cases. Conclusions: Our study underscores the potential of vaccine-induced immune responses in melanoma, emphasizing the identification of emerging biological markers and clinical parameters for predicting long-term remission.

2.
AIDS ; 37(3): 367-378, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695354

RESUMO

Immune performance following antiretroviral therapy initiation varies among patients. Despite achieving viral undetectability, a subgroup of patients fails to restore CD4+ T-cell counts during follow-up, which exposes them to non-AIDS defining comorbidities and increased mortality. Unfortunately, its mechanisms are incompletely understood, and no specific treatment is available. In this review, we address some of the pathophysiological aspects of the poor immune response from a translational perspective, with emphasis in the interaction between gut microbiome, intestinal epithelial dysfunction, and immune system, and we also discuss some studies attempting to improve immune performance by intervening in this vicious cycle.


Assuntos
Infecções por HIV , Humanos , Infecções por HIV/tratamento farmacológico , Contagem de Linfócito CD4 , Disbiose , Linfócitos T CD4-Positivos , Comorbidade , Terapia Antirretroviral de Alta Atividade
3.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805888

RESUMO

Damage-associated molecular patterns (DAMPs) play a critical role in dendritic cells (DCs) ability to trigger a specific and efficient adaptive immune response for different physiological and pathological scenarios. We have previously identified constitutive DAMPs (HMGB1 and Calreticulin) as well as new putative inducible DAMPs such as Haptoglobin (HP), from a therapeutically used heat shock-conditioned melanoma cell lysate (called TRIMEL). Remarkably, HP was shown to be the most abundant protein in the proteomic profile of heat shock-conditioned TRIMEL samples. However, its relative contribution to the observed DCs phenotype has not been fully elucidated. Human DCs were generated from monocytes isolated from PBMC of melanoma patients and healthy donors. DC lineage was induced with rhIL-4 and rhGM-CSF. After additional stimulation with HP, the proteome of these HP-stimulated cells was characterized. In addition, DCs were phenotypically characterized by flow cytometry for canonical maturation markers and cytokine production. Finally, in vitro transmigration capacity was assessed using Transwell plates. Our results showed that the stimulation with HP was associated with the presence of exclusive and higher relative abundance of specific immune-; energy production-; lipid biosynthesis-; and DAMPs-related proteins. Importantly, HP stimulation enhanced the expression of specific DC maturation markers and pro-inflammatory and Th1-associated cytokines, and an in vitro transmigration of primary human DCs. Taken together, these data suggest that HP can be considered as a new inducible DAMP with an important role in in vitro DC activation for cancer immunotherapy.


Assuntos
Melanoma , Monócitos , Diferenciação Celular , Citocinas/metabolismo , Células Dendríticas , Haptoglobinas/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Melanoma/metabolismo , Monócitos/metabolismo , Fenótipo , Proteômica
4.
J Alzheimers Dis ; 73(2): 443-454, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31839609

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the adult population. There is evidence of an inverse epidemiological relationship between AD and cancer, another prevalent age-related disease. This has led to hypothesize that there could be a common biological mechanism, deregulated in opposite directions that might explain the phenomenon of mutual protection. The immunological system and its regulatory checkpoints are good candidates to explain why having survived a cancer could protect from developing AD. During cancerous growth, the neoplastic cells induce immune tolerance to block the host's immunity system that would prevent tumor growth. This has led to the development of drugs that block distinct immune checkpoints, such as Programmed Death 1 (PD-1) and its major ligand PD-L1, that have shown great promise in treating diverse types of cancer. We propose that in those individuals who survived a cancer, the immune system is left in a state of diminished tolerance or proinflammatory systemic milieu, after its successful attempt to fight the cancer, that protects them from developing AD.


Assuntos
Doença de Alzheimer/imunologia , Neoplasias/imunologia , Envelhecimento/imunologia , Doença de Alzheimer/complicações , Doença de Alzheimer/epidemiologia , Humanos , Incidência , Neoplasias/complicações , Neoplasias/epidemiologia
5.
J Immunol Res ; 2019: 9631515, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886313

RESUMO

Ovarian epithelial carcinoma (OEC) is the most frequent ovarian tumor, characterized by a high mortality in advanced stages where conventional therapies are not effective. Based on the role of the immune system in the progression of this disease, immunotherapy using checkpoint blockade has been considered as a therapeutic alternative. Nevertheless, its results do not match up to the positive results in entities like melanoma and other malignancies, suggesting the need to find other therapies to be used alone or in combination. Dendritic cell- (DC-) based vaccines have shown promising results in several types of cancer, such as melanoma, prostate, and lung cancers, due to the essential role played by DCs in the activation of specific T cells, thus using other ways of activating the immune response than immune checkpoint blockade. During the last decade, we have used DC-based vaccines loaded with an allogeneic heat shock-conditioned melanoma cell lysate in the treatment of advanced stage patients in a series of clinical trials. In these studies, 60% of treated patients showed immunological responses which correlated positively with improved survival. Considering the relevance of ovarian cancer and the promising results of our DC-based vaccine, we show here that heat shock-conditioned cell lysates derived from ovarian epithelial carcinoma cell lines have the potential to induce the phenotypic and functional maturation of human DC, which in turn, is able to induce an efficient CD4+ and CD8+ T cell-mediated immune responses against ovarian cancer cell lines in vitro. In summary, OEC heat shock-conditioned cell lysate-loaded DCs may be considered for future combined immunotherapy approaches against ovarian tumors.


Assuntos
Carcinoma Epitelial do Ovário/imunologia , Células Dendríticas/imunologia , Resposta ao Choque Térmico , Neoplasias Ovarianas/imunologia , Linfócitos T/imunologia , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/terapia , Linhagem Celular Tumoral , Células Dendríticas/metabolismo , Feminino , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/imunologia , Humanos , Imunoterapia , Interferon gama/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/terapia , Linfócitos T/metabolismo
6.
Cancers (Basel) ; 11(8)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382462

RESUMO

Hypercoagulable state is linked to cancer progression; however, the precise role of the coagulation cascade is poorly described. Herein, we examined the contribution of a hypercoagulative state through the administration of intravenous Coagulation Factor Xa (FXa), on the growth of solid human tumors and the experimental metastasis of the B16F10 melanoma in mouse models. FXa increased solid tumor volume and lung, liver, kidney and lymph node metastasis of tail-vein injected B16F10 cells. Concentrating on the metastasis model, upon coadministration of the anticoagulant Dalteparin, lung metastasis was significantly reduced, and no metastasis was observed in other organs. FXa did not directly alter proliferation, migration or invasion of cancer cells in vitro. Alternatively, FXa upon endothelial cells promoted cytoskeleton contraction, disrupted membrane VE-Cadherin pattern, heightened endothelial-hyperpermeability, increased inflammatory adhesion molecules and enhanced B16F10 adhesion under flow conditions. Microarray analysis of endothelial cells treated with FXa demonstrated elevated expression of inflammatory transcripts. Accordingly, FXa treatment increased immune cell infiltration in mouse lungs, an effect reduced by dalteparin. Taken together, our results suggest that FXa increases B16F10 metastasis via endothelial cell activation and enhanced cancer cell-endothelium adhesion advocating that the coagulation system is not merely a bystander in the process of cancer metastasis.

7.
Immunobiology ; 224(5): 697-705, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221438

RESUMO

BACKGROUND: Dendritic cells (DCs) are usually immunogenic, but they are also capable of inducing tolerance under anti-inflammatory conditions. Immunotherapy based on autologous DCs loaded with an allogeneic melanoma cell lysate (TRIMEL/DCs) induces immunological responses and increases melanoma patient survival. Glucocorticoids can suppress DC maturation and function, leading to a DC-mediated inhibition of T cell responses. METHODS: The effect of dexamethasone, a glucocorticoid extensively used in cancer therapies, on TRIMEL/DCs phenotype and immunogenicity was examined. RESULTS: Dexamethasone induced a semi-mature phenotype on TRIMEL/DC with low maturation surface marker expressions, decreased pro-inflammatory cytokine induction (IL-1ß and IL-12) and increased release of regulatory cytokines (IL-10 and TGF-ß). Dexamethasone-treated TRIMEL/DCs inhibited allogeneic CD4+ T cell proliferation and cytokine release (IFNγ, TNF-α and IL-17). Co-culturing melanoma-specific memory tumor-infiltrating lymphocytes with dexamethasone-treated TRIMEL/DC inhibited proliferation and effector T cell activities, including cytokine secretion and anti-melanoma cytotoxicity. CONCLUSIONS: These findings suggest that dexamethasone repressed melanoma cell lysate-mediated DC maturation, generating a potent tolerogenic-like DC phenotype that inhibited melanoma-specific effector T cell activities. These results suggest that dexamethasone-induced immunosuppression may interfere with the clinical efficacy of DC-based melanoma vaccines, and must be taken into account for optimal design of cellular therapy against cancer.


Assuntos
Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Antígenos de Neoplasias/imunologia , Células Dendríticas/imunologia , Dexametasona/farmacologia , Tolerância Imunológica , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Humanos , Imunomodulação , Imunofenotipagem , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Fenótipo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo
8.
Regen Med ; 13(4): 427-441, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29985755

RESUMO

AIM: This study aimed to evaluate the effect of two platelet preparations used in the clinic, pure platelet-rich plasma (P-PRP) and the supernatant of calcium-activated P-PRP (S-PRP), on the phenotype of human macrophages. MATERIALS & METHODS: Surface markers and cytokine production of human monocyte-derived macrophages were analyzed after 24 h stimulation with P-PRP or S-PRP. RESULTS: P-PRP and S-PRP present no difference in the expression of CD206, a M2 tissue-repair macrophage-related marker. However, these same macrophages presented different levels of CD163, CD86 as well as different IL-10 secretion capacities after 24 h incubation. CONCLUSION: These platelet preparations do not have an equivalent biological effect over macrophages, which suggest that they may present different clinical regenerative potentials.


Assuntos
Antígenos CD/biossíntese , Cálcio/farmacologia , Interleucina-10/sangue , Macrófagos/citologia , Macrófagos/metabolismo , Plasma Rico em Plaquetas , Adolescente , Adulto , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
J Immunol Res ; 2018: 3982942, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29744371

RESUMO

Autologous dendritic cells (DCs) loaded with cancer cell-derived lysates have become a promising tool in cancer immunotherapy. During the last decade, we demonstrated that vaccination of advanced melanoma patients with autologous tumor antigen presenting cells (TAPCells) loaded with an allogeneic heat shock- (HS-) conditioned melanoma cell-derived lysate (called TRIMEL) is able to induce an antitumor immune response associated with a prolonged patient survival. TRIMEL provides not only a broad spectrum of potential melanoma-associated antigens but also danger signals that are crucial in the induction of a committed mature DC phenotype. However, potential changes induced by heat conditioning on the proteome of TRIMEL are still unknown. The identification of newly or differentially expressed proteins under defined stress conditions is relevant for understanding the lysate immunogenicity. Here, we characterized the proteomic profile of TRIMEL in response to HS treatment. A quantitative label-free proteome analysis of over 2800 proteins was performed, with 91 proteins that were found to be regulated by HS treatment: 18 proteins were overexpressed and 73 underexpressed. Additionally, 32 proteins were only identified in the HS-treated TRIMEL and 26 in non HS-conditioned samples. One protein from the overexpressed group and two proteins from the HS-exclusive group were previously described as potential damage-associated molecular patterns (DAMPs). Some of the HS-induced proteins, such as haptoglobin, could be also considered as DAMPs and candidates for further immunological analysis in the establishment of new putative danger signals with immunostimulatory functions.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Imunoterapia Adotiva/métodos , Melanoma/terapia , Neoplasias Cutâneas/terapia , Alarminas/imunologia , Antígenos de Neoplasias/imunologia , Extratos Celulares , Linhagem Celular Tumoral , Células Dendríticas/transplante , Proteínas de Choque Térmico/imunologia , Hemoglobinas/metabolismo , Temperatura Alta , Humanos , Imunização , Isoantígenos/imunologia , Melanoma/imunologia , Estadiamento de Neoplasias , Proteômica , Neoplasias Cutâneas/imunologia
10.
Oncotarget ; 9(24): 17014-17027, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29682201

RESUMO

PURPOSE: We previously showed that autologous dendritic cells (DCs) loaded with an allogeneic heat shock (HS)-conditioned melanoma cell-derived lysate, called TRIMEL, induce T-cell-mediated immune responses in stage IV melanoma patients. Importantly, a positive delayed-type hypersensitivity (DTH) reaction against TRIMEL after vaccination, correlated with patients prolonged survival. Furthermore, we observed that DTH reaction was associated with a differential response pattern reflected in the presence of distinct cell subpopulations in peripheral blood. Detected variations in patient responses encouraged molecular studies aimed to identify gene expression profiles induced after vaccination in treated patients, allowing the identification of new molecular predictive markers. METHODS: Gene expression patterns were analyzed by microarrays during vaccination, and some of them confirmed by quantitative real-time reverse transcriptase PCR (qRT-PCR) in the total leukocyte population of a representative group of responder and non-responder patients. New candidates for biomarkers with predictive value were identified using bioinformatics, molecular analysis, and flow cytometry. RESULTS: Seventeen genes overexpressed in responder patients after vaccination respect to non-responders were identified after a mathematical analysis, from which ten were linked to immune responses and five related to cell cycle control and signal transduction. In immunological responder patients, increased protein levels of the chemokine receptor CXCR4 and the Fc-receptor CD32 were observed on cell membranes of CD8+ T and B cells and the monocyte population, respectively, confirming gene expression results. CONCLUSIONS: Our study contributes to finding new molecular markers associated with clinical outcome and better understanding of clinically relevant immunological responses induced by anti-tumor DC-vaccines.

11.
Eur J Med Chem ; 150: 74-86, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29524730

RESUMO

Conjugation to carrier proteins is a way to improve the immunogenicity of peptides. Such is the case for peptides mimicking carbohydrate tumor-associated antigens in cancer vaccine development. The most used protein for this purpose is the keyhole limpet hemocyanin (KLH) from Megathura crenulata. Its limited bioavailability has prompted interest in finding new candidates; nevertheless, it is not known whether other hemocyanins might be equally efficient as carrier of carbohydrate peptide mimotopes to promotes anti-tumor responses. Here, we evaluated the carrier and antitumor activity of novel hemocyanins with documented immunogenicity obtained from Concholepas concholepas (CCH) and Fissurella latimarginata (FLH), coupled through sulfo-SMCC to P10, a mimetic peptide of GD2, the major ganglioside constituent of neuroectodermal tumors, and incorporating AddaVax as an adjuvant. The humoral immune responses of mice showed that CCH-P10 and FLH-P10 conjugates elicited specific IgM and IgG antibodies against P10 mimotope, similar to those obtained with KLH-P10, which was used as a positive control. The CCH-P10 and FLH-P10 antisera, exhibited cross-reactivity with murine and human melanoma cells, like anti-CCH and anti-FLH sera suggesting a cross-reaction of CCH and FLH glycosylations with carbohydrate epitopes on the tumor cell surfaces, similar to the KLH antisera. When mice were primed with each hemocyanin-P10 and challenged with melanoma cells, better antitumor effects were observed for FLH-P10 than for CCH-P10 and, as for KLH-P10, irrespective of conjugation. These data demonstrate that CCH and FLH are useful carriers of carbohydrate mimotopes; however, the best antitumor activity of FLH preparations, indicate that is a suitable candidate for further cancer vaccines research.


Assuntos
Antineoplásicos/farmacologia , Gangliosídeos/farmacologia , Hemocianinas/farmacologia , Melanoma/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Gangliosídeos/química , Gastrópodes/química , Hemocianinas/química , Imunoterapia , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Relação Estrutura-Atividade
12.
Front Immunol ; 8: 188, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28286504

RESUMO

Molluskan hemocyanins are enormous oxygen-carrier glycoproteins that show remarkable immunostimulatory properties when inoculated in mammals, such as the generation of high levels of antibodies, a strong cellular reaction, and generation of non-specific antitumor immune responses in some types of cancer, particularly for superficial bladder cancer. These proteins have the ability to bias the immune response toward a Th1 phenotype. However, despite all their current uses with beneficial clinical outcomes, a clear mechanism explaining these properties is not available. Taking into account reports of natural antibodies against the hemocyanin of the gastropod Megathura crenulata [keyhole limpet hemocyanin (KLH)] in humans as well as other vertebrate species, we report here for the first time, the presence, in sera from unimmunized healthy donors, of antibodies recognizing, in addition to KLH, two other hemocyanins from gastropods with documented immunomodulatory capacities: Fisurella latimarginata hemocyanin (FLH) and Concholepas concholepas hemocyanin (CCH). Through an ELISA screening, we found IgM and IgG antibodies reactive with these hemocyanins. When the capacity of these antibodies to bind deglycosylated hemocyanins was studied, no decreased interaction was detected. Moreover, in the case of FLH, deglycosylation increased antibody binding. We evaluated through an in vitro complement deposition assay whether these antibodies activated the classical pathway of the human complement system. The results showed that all three hemocyanins and their deglycosylated counterparts elicited this activation, mediated by C1 binding to immunoglobulins. Thus, this work contributes to the understanding on how the complement system could participate in the immunostimulatory properties of hemocyanins, through natural, complement-activating antibodies reacting with these proteins. Although a role for carbohydrates cannot be completely ruled out, in our experimental setting, glycosylation status had a limited effect. Finally, our data open possibilities for further studies leading to the design of improved hemocyanin-based research tools for diagnosis and immunotherapy.

13.
Oncotarget ; 7(41): 67373-67386, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27634913

RESUMO

MRP1 transporter correlates positively with glioma malignancy and the Multiple Drug Resistance (MDR) phenotype in Glioblastoma Multiforme (GBM). Evidence shows that the MRP1 transporter is controlled by the adenosine signalling axis. The aim of this study was to identify the role of adenosine on the MDR phenotype in Glioblastoma Stem-like Cells (GSCs), the cell population responsible for the tumorigenic and chemoresistance capabilities of this tumour. We found that GSCs have increased intrinsic capacity to generate extracellular adenosine, thus controlling MRP1 transporter expression and activity via activation of the adenosine A3 receptor (A3AR). We showed PI3K/Akt and MEK/ERK1/2 signaling pathways downstream A3AR to control MRP1 in GSCs. In vitro pharmacological blockade of A3AR had a chemosensitizing effect, enhancing the actions of antitumour drugs and decreasing cell viability and proliferation of GSCs. In addition, we produced an in vivo xenograft model by subcutaneous inoculation of human GSCs in NOD/SCID-IL2Rg null mice. Pharmacological blockade of A3AR generated a chemosensitizing effect, enhancing the effectiveness of the MRP1 transporter substrate, vincristine, reducing tumour size and the levels of CD44 and Nestin stem cell markers as well as the Ki-67 proliferation indicator. In conclusion, we demonstrated the chemosensitizing effect of A3AR blockade on GSCs.


Assuntos
Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glioblastoma/patologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Células-Tronco Neoplásicas/patologia , Receptor A3 de Adenosina/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo
14.
J Oral Pathol Med ; 45(2): 127-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26102283

RESUMO

OBJECTIVE: Graft-versus-host disease (GVHD) is one of the main complications after haematopoietic stem cell transplantation. Clinical features of GVHD include either an acute (aGVHD) or a chronic (cGVHD) condition that affects locations such as the oral mucosa. While the involvement of the host's dendritic cells (DCs) has been demonstrated in aGVHD, the origin (donor/host) and mechanisms underlying oral cGVHD have not been completely elucidated. In this study, we intend to determine the origin of DCs present in mucosal tissue biopsies from the oral cavity of transplanted patients affected by cGVHD. METHODS: We purified DCs, from oral biopsies of three patients with cGVHD, through immunobeads and subsequently performed DNA extraction. The origin of the obtained DCs was determined by PCR amplification of 13 informative short tandem repeat (STR) alleles. We also characterised the DCs phenotype and the inflammatory infiltrate from biopsies of two patients by immunohistochemistry. RESULTS: Clinical and histological features of the biopsies were concordant with oral cGVHD. We identified CD11c-, CD207- and CD1a-positive cells in the epithelium and beneath the basal layer. Purification of DCs from the mucosa of patients affected by post-transplantation cGVHD was >95%. PCR-STR data analysis of DCs DNA showed that 100% of analysed cells were of donor origin in all of the evaluated patients. CONCLUSION: Our results demonstrate that resident DCs isolated from the oral tissue of allotransplanted patients affected by cGVHD are originated from the donor. Further research will clarify the role of DCs in the development and/or severity of oral cGVHD.


Assuntos
Células Dendríticas/patologia , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/métodos , Doenças da Boca/etiologia , Doenças da Boca/patologia , Mucosa Bucal/patologia , Quimeras de Transplante , Adolescente , Adulto , Antígenos CD/análise , Antígenos CD1/análise , Antígeno CD11c/análise , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Lectinas Tipo C/análise , Masculino , Lectinas de Ligação a Manose/análise , Repetições de Microssatélites/genética , Pessoa de Meia-Idade , Boca , Transplante Homólogo , Adulto Jovem
15.
Front Immunol ; 6: 535, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539197

RESUMO

The ability of dendritic cells (DCs) to trigger tolerance or immunity is dictated by the context in which an antigen is encountered. A large body of evidence indicates that antigen presentation by steady-state DCs induces peripheral tolerance through mechanisms such as the secretion of soluble factors, the clonal deletion of autoreactive T cells, and feedback control of regulatory T cells. Moreover, recent understandings on the function of DC lineages and the advent of murine models of DC depletion have highlighted the contribution of DCs to lymphocyte tolerance. Importantly, these findings are now being applied to human research in the contexts of autoimmune diseases, allergies, and transplant rejection. Indeed, DC-based immunotherapy research has made important progress in the area of human health, particularly in regards to cancer. A better understanding of several DC-related aspects including the features of DC lineages, milieu composition, specific expression of surface molecules, the control of signaling responses, and the identification of competent stimuli able to trigger and sustain a tolerogenic outcome will contribute to the success of DC-based immunotherapy in the area of lymphocyte tolerance. This review will discuss the latest advances in the biology of DC subtypes related to the induction of regulatory T cells, in addition to presenting current ex vivo protocols for tolerogenic DC production. Particular attention will be given to the molecules and signals relevant for achieving an adequate tolerogenic response for the treatment of human pathologies.

16.
Immunology ; 142(3): 396-405, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24673602

RESUMO

We have previously reported a novel method for the production of tumour-antigen-presenting cells (referred to as TAPCells) that are currently being used in cancer therapy, using an allogeneic melanoma-derived cell lysate (referred to as TRIMEL) as an antigen provider and activation factor. It was recently demonstrated that TAPCell-based immunotherapy induces T-cell-mediated immune responses resulting in improved long-term survival of stage IV melanoma patients. Clinically, dendritic cell (DC) migration from injected sites to lymph nodes is an important requirement for an effective anti-tumour immunization. This mobilization of DCs is mainly driven by the C-C chemokine receptor type 7 (CCR7), which is up-regulated on mature DCs. Using flow cytometry and immunohistochemistry, we investigated if TRIMEL was capable of inducing the expression of the CCR7 on TAPCells and enhancing their migration in vitro, as well as their in vivo relocation to lymph nodes in an ectopic xenograft animal model. Our results confirmed that TRIMEL induces a phenotypic maturation and increases the expression of surface CCR7 on melanoma patient-derived DCs, and also on the monocytic/macrophage cell line THP-1. Moreover, in vitro assays showed that TRIMEL-stimulated DCs and THP-1 cells were capable of migrating specifically in the presence of the CCR7 ligand CCL19. Finally, we demonstrated that TAPCells could migrate in vivo from the injection site into the draining lymph nodes. This work contributes to an increased understanding of the biology of DCs produced ex vivo allowing the design of new strategies for effective DC-based vaccines for treating aggressive melanomas.


Assuntos
Extratos Celulares/farmacologia , Movimento Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Linfonodos/imunologia , Melanoma , Receptores CCR7/genética , Animais , Linhagem Celular Tumoral , Células Dendríticas/citologia , Humanos , Linfonodos/citologia , Linfonodos/efeitos dos fármacos , Masculino , Melanoma/imunologia , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores CCR7/imunologia , Receptores CCR7/metabolismo
17.
Hum Vaccin Immunother ; 10(11): 3261-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25625929

RESUMO

Autologous dendritic cells (DCs) loaded with tumor-associated antigens (TAAs) are a promising immunological tool for cancer therapy. These stimulate the antitumor response and immunological memory generation. Nevertheless, many patients remain refractory to DC approaches. Antigen (Ag) delivery to DCs is relevant to vaccine success, and antigen peptides, tumor-associated proteins, tumor cells, autologous tumor lysates, and tumor-derived mRNA have been tested as Ag sources. Recently, DCs loaded with allogeneic tumor cell lysates were used to induce a potent immunological response. This strategy provides a reproducible pool of almost all potential Ags suitable for patient use, independent of MHC haplotypes or autologous tumor tissue availability. However, optimizing autologous tumor cell lysate preparation is crucial to enhancing efficacy. This review considers the role of cancer cell-derived lysates as a relevant source of antigens and as an activating factor for ex vivo therapeutic DCs capable of responding to neoplastic cells. These promising therapies are associated with the prolonged survival of advanced cancer patients.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Extratos Celulares/uso terapêutico , Células Dendríticas/imunologia , Neoplasias/imunologia , Extratos Celulares/imunologia , Humanos , Memória Imunológica/imunologia , Neoplasias/prevenção & controle , Neoplasias/terapia , Linfócitos T Citotóxicos/imunologia
18.
J Immunol ; 192(3): 1313-9, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24376266

RESUMO

Gap junctions (GJs) mediate intercellular communication between adjacent cells. Previously, we showed that connexin 43 (Cx43), the main GJ protein in the immune system, mediates Ag transfer between human dendritic cells (DCs) and is recruited to the immunological synapse during T cell priming. This crosstalk contributed to T cell activation, intracellular Ca(2+) responses, and cytokine release. However, the role of GJs in NK cell activation by DCs and NK cell-mediated cytotoxicity against tumor cells remains unknown. In this study, we found polarization of Cx43 at the NK/DC and NK/tumor cell-contact sites, accompanied by the formation of functional GJs between NK/DCs and NK/tumor cells, respectively. Cx43-GJ-mediated intercellular communication (GJIC) between human NK and DCs was bidirectional. Blockage of Cx43-GJIC inhibited NK cell activation, though it affected neither the phenotype nor the function of DCs. Cx43 knockdown or inhibition using mimetic peptides greatly reduced CD69 and CD25 expression and IFN-γ release by DC-stimulated NK cells. Moreover, blocking Cx43 strongly inhibited the NK cell-mediated tumor cell lysis associated with inhibition of granzyme B activity and Ca(2+) influx. Our data identify a novel and active role for Cx43-GJIC in human NK cell activation and antitumor effector functions that may be important for the design of new immune therapeutic strategies.


Assuntos
Conexina 43/imunologia , Citotoxicidade Imunológica/imunologia , Células Dendríticas/imunologia , Junções Comunicantes/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Apoptose , Sinalização do Cálcio , Comunicação Celular/imunologia , Linhagem Celular Tumoral , Conexina 43/antagonistas & inibidores , Células Dendríticas/ultraestrutura , Granzimas/fisiologia , Humanos , Vigilância Imunológica , Sinapses Imunológicas/imunologia , Testes de Liberação de Interferon-gama , Células Matadoras Naturais/ultraestrutura
19.
Cancer Immunol Immunother ; 62(4): 761-72, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23242374

RESUMO

INTRODUCTION: Immunization with autologous dendritic cells (DCs) loaded with a heat shock-conditioned allogeneic melanoma cell lysate caused lysate-specific delayed type hypersensitivity (DTH) reactions in a number of patients. These responses correlated with a threefold prolonged long-term survival of DTH(+) with respect to DTH(-) unresponsive patients. Herein, we investigated whether the immunological reactions associated with prolonged survival were related to dissimilar cellular and cytokine responses in blood. MATERIALS AND METHODS: Healthy donors and melanoma patient's lymphocytes obtained from blood before and after vaccinations and from DTH biopsies were analyzed for T cell population distribution and cytokine release. RESULTS/DISCUSSION: Peripheral blood lymphocytes from melanoma patients have an increased proportion of Th3 (CD4(+) TGF-ß(+)) regulatory T lymphocytes compared with healthy donors. Notably, DTH(+) patients showed a threefold reduction of Th3 cells compared with DTH(-) patients after DCs vaccine treatment. Furthermore, DCs vaccination resulted in a threefold augment of the proportion of IFN-γ releasing Th1 cells and in a twofold increase of the IL-17-producing Th17 population in DTH(+) with respect to DTH(-) patients. Increased Th1 and Th17 cell populations in both blood and DTH-derived tissues suggest that these profiles may be related to a more effective anti-melanoma response. CONCLUSIONS: Our results indicate that increased proinflammatory cytokine profiles are related to detectable immunological responses in vivo (DTH) and to prolonged patient survival. Our study contributes to the understanding of immunological responses produced by DCs vaccines and to the identification of follow-up markers for patient outcome that may allow a closer individual monitoring of patients.


Assuntos
Vacinas Anticâncer/administração & dosagem , Citocinas/imunologia , Células Dendríticas/imunologia , Imunoterapia Adotiva/métodos , Melanoma/terapia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Vacinas Anticâncer/imunologia , Feminino , Humanos , Hipersensibilidade Tardia/imunologia , Masculino , Melanoma/sangue , Melanoma/imunologia , Pessoa de Meia-Idade , Células Th1/imunologia , Células Th17/imunologia , Adulto Jovem
20.
Biol Res ; 46(4): 431-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24510145

RESUMO

Here we summarize 10 years of effort in the development of a biomedical innovation with global projections. This innovation consists of a novel method for the production of therapeutic dendritic-like cells called Tumor Antigen Presenting Cells (TAPCells®). TAPCells-based immunotherapy was tested in more than 120 stage III and IV melanoma patients and 20 castration-resistant prostate cancer patients in a series of phase I and I/II clinical trials. TAPCells vaccines induced T cell-mediated memory immune responses that correlated with increased survival in melanoma patients and prolonged prostate-specific antigen doubling time in prostate cancer patients. Importantly, more than 60% of tested patients showed a Delayed Type Hypersensitivity (DTH) reaction against the lysates, indicating the development of anti-tumor immunological memory that correlates with clinical benefits. The in vitro analysis of the lysate mix showed that it contains damage-associated molecular patterns such as HMBG-1 protein which are capable to improve, through Toll-like receptor-4, maturation and antigen cross-presentation of the dendritic cells (DC). In fact, a Toll-like receptor-4 polymorphism correlates with patient clinical outcomes. Moreover, Concholepas concholepas hemocyanin (CCH) used as adjuvant proved to be safe and capable of enhancing the immunological response. Furthermore, we observed that DC vaccination resulted in a three-fold increase of T helper-1 lymphocytes releasing IFN-γ and a two-fold increase of T helper-17 lymphocytes capable of producing IL-17 in DTH+ with respect to DTH- patients. Important steps have been accomplished for TAPCells technology transfer, including patenting, packaging and technology assessment. Altogether, our results indicate that TAPCells vaccines constitute an exceptional Chilean national innovation of international value.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/administração & dosagem , Células Dendríticas/imunologia , Melanoma/terapia , Neoplasias da Próstata/terapia , Neoplasias Cutâneas/terapia , Extratos Celulares/imunologia , Extratos Celulares/uso terapêutico , Chile , Feminino , Humanos , Masculino , Melanoma/imunologia , Estadiamento de Neoplasias , Neoplasias da Próstata/imunologia , Neoplasias Cutâneas/imunologia , Receptor 4 Toll-Like/imunologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...