Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Chem ; 68(6): 837-847, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35312747

RESUMO

BACKGROUND: OncoMasTR is a recently developed multigene prognostic test for early-stage breast cancer. The test has been developed in a kit-based format for decentralized deployment in molecular pathology laboratories. The analytical performance characteristics of the OncoMasTR test are described in this study. METHODS: Expression levels of 6 genes were measured by 1-step reverse transcription-quantitative PCR on RNA samples prepared from formalin-fixed, paraffin-embedded (FFPE) breast tumor specimens. Assay precision, reproducibility, input range, and interference were determined using FFPE-derived RNA samples representative of low and high prognostic risk scores. A pooled RNA sample derived from 6 FFPE breast tumor specimens was used to establish the linear range, limit of detection, and amplification efficiency of the individual gene expression assays. RESULTS: The overall precision of the OncoMasTR test was high with an SD of 0.16, which represents less than 2% of the 10-unit risk score range. Test results were reproducible across 4 testing sites, with correlation coefficients of 0.94 to 0.96 for the continuous risk score and concordance of 86% to 96% in low-/high-risk sample classification. Consistent risk scores were obtained across a > 100-fold RNA input range. Individual gene expression assays were linear up to quantification cycle values of 36.0 to 36.9, with amplification efficiencies of 80% to 102%. Test results were not influenced by agents used during RNA isolation, by low levels of copurified genomic DNA, or by moderate levels of copurified adjacent nontumor tissue. CONCLUSION: The OncoMasTR prognostic test displays robust analytical performance that is suitable for deployment by local pathology laboratories for decentralized use.


Assuntos
Neoplasias da Mama , Biomarcadores Tumorais/genética , Mama/patologia , Neoplasias da Mama/patologia , Feminino , Formaldeído , Perfilação da Expressão Gênica/métodos , Humanos , Inclusão em Parafina , Prognóstico , RNA/análise , Receptores de Estrogênio/metabolismo , Reprodutibilidade dos Testes
2.
Eur J Cancer ; 152: 78-89, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34090143

RESUMO

AIM: The aim of the study was to assess the prognostic performance of a 6-gene molecular score (OncoMasTR Molecular Score [OMm]) and a composite risk score (OncoMasTR Risk Score [OM]) and to conduct a within-patient comparison against four routinely used molecular and clinicopathological risk assessment tools: Oncotype DX Recurrence Score, Ki67, Nottingham Prognostic Index and Clinical Risk Category, based on the modified Adjuvant! Online definition and three risk factors: patient age, tumour size and grade. METHODS: Biospecimens and clinicopathological information for 404 Irish women also previously enrolled in the Trial Assigning Individualized Options for Treatment [Rx] were provided by 11 participating hospitals, as the primary objective of an independent translational study. Gene expression measured via RT-qPCR was used to calculate OMm and OM. The prognostic value for distant recurrence-free survival (DRFS) and invasive disease-free survival (IDFS) was assessed using Cox proportional hazards models and Kaplan-Meier analysis. All statistical tests were two-sided ones. RESULTS: OMm and OM (both with likelihood ratio statistic [LRS] P < 0.001; C indexes = 0.84 and 0.85, respectively) were more prognostic for DRFS and provided significant additional prognostic information to all other assessment tools/factors assessed (all LRS P ≤ 0.002). In addition, the OM correctly classified more patients with distant recurrences (DRs) into the high-risk category than other risk classification tools. Similar results were observed for IDFS. DISCUSSION: Both OncoMasTR scores were significantly prognostic for DRFS and IDFS and provided additional prognostic information to the molecular and clinicopathological risk factors/tools assessed. OM was also the most accurate risk classification tool for identifying DR. A concise 6-gene signature with superior risk stratification was shown to increase prognosis reliability, which may help clinicians optimise treatment decisions.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Biomarcadores Tumorais/genética , Neoplasias da Mama/mortalidade , Mama/patologia , Recidiva Local de Neoplasia/epidemiologia , Adulto , Idoso , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Testes Genéticos/métodos , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Estudos Observacionais como Assunto , Prognóstico , Estudos Prospectivos , Receptor ErbB-2/análise , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/análise , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/análise , Receptores de Progesterona/metabolismo , Reprodutibilidade dos Testes , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , Adulto Jovem
3.
Nat Commun ; 9(1): 5398, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30568248

RESUMO

This Article contains an error in the author affiliations. The correct affiliation for author Ruchi Shukla is 'MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK', and is not 'Mater Research Institute - University of Queensland, TRI Building, Woolloongabba QLD 4102, Australia'.

4.
EMBO J ; 37(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29959219

RESUMO

Long INterspersed Element class 1 (LINE-1) elements are a type of abundant retrotransposons active in mammalian genomes. An average human genome contains ~100 retrotransposition-competent LINE-1s, whose activity is influenced by the combined action of cellular repressors and activators. TREX1, SAMHD1 and ADAR1 are known LINE-1 repressors and when mutated cause the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). Mutations in RNase H2 are the most common cause of AGS, and its activity was proposed to similarly control LINE-1 retrotransposition. It has therefore been suggested that increased LINE-1 activity may be the cause of aberrant innate immune activation in AGS Here, we establish that, contrary to expectations, RNase H2 is required for efficient LINE-1 retrotransposition. As RNase H1 overexpression partially rescues the defect in RNase H2 null cells, we propose a model in which RNase H2 degrades the LINE-1 RNA after reverse transcription, allowing retrotransposition to be completed. This also explains how LINE-1 elements can retrotranspose efficiently without their own RNase H activity. Our findings appear to be at odds with LINE-1-derived nucleic acids driving autoinflammation in AGS.


Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Malformações do Sistema Nervoso/genética , Ribonuclease H/genética , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Células HCT116 , Células HeLa , Humanos , Transcrição Reversa/genética , Ribonuclease H/biossíntese
5.
Methods Mol Biol ; 1400: 1-19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26895043

RESUMO

Transposable elements (TEs) have been considered traditionally as junk DNA, i.e., DNA sequences that despite representing a high proportion of genomes had no evident cellular functions. However, over the last decades, it has become undeniable that not only TE-derived DNA sequences have (and had) a fundamental role during genome evolution, but also TEs have important implications in the origin and evolution of many genomic disorders. This concise review provides a brief overview of the different types of TEs that can be found in genomes, as well as a list of techniques and methods used to study their impact and mobilization. Some of these techniques will be covered in detail in this Method Book.


Assuntos
Elementos de DNA Transponíveis , Genoma Humano , Genômica , Regulação da Expressão Gênica , Genômica/métodos , Humanos , Elementos Nucleotídeos Longos e Dispersos , Retroelementos
6.
Nat Commun ; 7: 10286, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26743714

RESUMO

Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs.


Assuntos
Elementos Alu/genética , Proliferação de Células/genética , Reprogramação Celular/genética , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular , Técnicas de Reprogramação Celular , Epigênese Genética , Humanos , Repetições Minissatélites , Retroelementos/genética , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...