Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850430

RESUMO

Interferometric coherence from SAR data is a tool used in a variety of Earth observation applications. In the context of crop monitoring, vegetation indices are commonly used to describe crop dynamics. The most frequently used vegetation indices based on radar data are constructed using the backscattered intensity at different polarimetric channels. As coherence is sensitive to the changes in the scene caused by vegetation and its evolution, it may potentially be used as an alternative tool in this context. The objective of this work is to evaluate the potential of using Sentinel-1 interferometric coherence for this purpose. The study area is an agricultural region in Sevilla, Spain, mainly covered by 18 different crops. Time series of different backscatter-based radar vegetation indices and the coherence amplitude for both VV and VH channels from Sentinel-1 were compared to the NDVI derived from Sentinel-2 imagery for a 5-year period, from 2017 to 2021. The correlations between the series were studied both during and outside the growing season of the crops. Additionally, the use of the ratio of the two coherences measured at both polarimetric channels was explored. The results show that the coherence is generally well correlated with the NDVI across all seasons. The ratio between coherences at each channel is a potential alternative to the separate channels when the analysis is not restricted to the growing season of the crop, as its year-long temporal evolution more closely resembles that of the NDVI. Coherence and backscatter can be used as complementary sources of information, as backscatter-based indices describe the evolution of certain crops better than coherence.

2.
Sensors (Basel) ; 22(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36433293

RESUMO

A geometrical decorrelation constitutes one of the sources of noise present in Synthetic Aperture Radar (SAR) interferograms. It comes from the different incidence angles of the two images used to form the interferograms, which cause a spectral (frequency) shift between them. A geometrical decorrelation must be compensated by a specific filtering technique known as range filtering, the goal of which is to estimate this spectral displacement and retain only the common parts of the images' spectra, reducing the noise and improving the quality of the interferograms. Multiple range filters have been proposed in the literature. The most widely used methods are an adaptive filter approach, which estimates the spectral shift directly from the data; a method based on orbital information, which assumes a constant-slope (or flat) terrain; and slope-adaptive algorithms, which consider both orbital information and auxiliary topographic data. Their advantages and limitations are analyzed in this manuscript and, additionally, a new, more refined approach is proposed. Its goal is to enhance the filtering process by automatically adapting the filter to all types of surface variations using a multi-scale strategy. A pair of RADARSAT-2 images that mapped the mountainous area around the Etna volcano (Italy) are used for the study. The results show that filtering accuracy is improved with the new method including the steepest areas and vegetation-covered regions in which the performance of the original methods is limited.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...