Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 325(6): F792-F810, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823198

RESUMO

Farnesoid X receptor (FXR) activation reduces renal inflammation, but the underlying mechanisms remain elusive. Neutrophil extracellular traps (NETs) are webs of DNA formed when neutrophils undergo specialized programmed cell death (NETosis). The signaling lipid sphingosine-1-phosphate (S1P) stimulates NETosis via its receptor on neutrophils. Here, we identify FXR as a negative regulator of NETosis via repressing S1P signaling. We determined the effects of the FXR agonist obeticholic acid (OCA) in mouse models of adenosine phosphoribosyltransferase (APRT) deficiency and Alport syndrome, both genetic disorders that cause chronic kidney disease. Renal FXR activity is greatly reduced in both models, and FXR agonism reduces disease severity. Renal NETosis and sphingosine kinase 1 (Sphk1) expression are increased in diseased mice, and they are reduced by OCA in both models. Genetic deletion of FXR increases Sphk1 expression, and Sphk1 expression correlates with NETosis. Importantly, kidney S1P levels in Alport mice are two-fold higher than controls, and FXR agonism restores them back to baseline. Short-term inhibition of sphingosine synthesis in Alport mice with severe kidney disease reverses NETosis, establishing a causal relationship between S1P signaling and renal NETosis. Finally, extensive NETosis is present in human Alport kidney biopsies (six male, nine female), and NETosis severity correlates with clinical markers of kidney disease. This suggests the potential clinical relevance of the newly identified FXR-S1P-NETosis pathway. In summary, FXR agonism represses kidney Sphk1 expression. This inhibits renal S1P signaling, thereby reducing neutrophilic inflammation and NETosis.NEW & NOTEWORTHY Many preclinical studies have shown that the farnesoid X receptor (FXR) reduces renal inflammation, but the mechanism is poorly understood. This report identifies FXR as a novel regulator of neutrophilic inflammation and NETosis via the inhibition of sphingosine-1-phosphate signaling. Additionally, NETosis severity in human Alport kidney biopsies correlates with clinical markers of kidney disease. A better understanding of this signaling axis may lead to novel treatments that prevent renal inflammation and chronic kidney disease.


Assuntos
Armadilhas Extracelulares , Nefrite , Insuficiência Renal Crônica , Animais , Feminino , Humanos , Masculino , Camundongos , Biomarcadores , Armadilhas Extracelulares/metabolismo , Inflamação , Insuficiência Renal Crônica/tratamento farmacológico , Esfingosina/metabolismo
2.
Mol Aspects Med ; 78: 100935, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33272705

RESUMO

Over the last 30 years, nuclear receptors (NRs) have been increasingly recognized as key modulators of systemic homeostasis and as contributing factors in many diseases. In the kidney, NRs play numerous important roles in maintaining homeostasis-many of which continue to be unraveled. As "master regulators", these important transcription factors integrate and coordinate many renal processes such as circadian responses, lipid metabolism, fatty acid oxidation, glucose handling, and inflammatory responses. The use of recently-developed genetic tools and small molecule modulators have allowed for detailed studies of how renal NRs contribute to kidney homeostasis. Importantly, while NRs are intimately involved in proper kidney function, they are also implicated in a variety of renal diseases such as diabetes, acute kidney injury, and other conditions such as aging. In the last 10 years, our understanding of renal disease etiology and progression has been greatly shaped by knowledge regarding how NRs are dysregulated in these conditions. Importantly, NRs have also become attractive therapeutic targets for attenuation of renal diseases, and their modulation for this purpose has been the subject of intense investigation. Here, we review the role in health and disease of six key renal NRs including the peroxisome proliferator-activated receptors (PPAR), estrogen-related receptors (ERR), the farnesoid X receptors (FXR), estrogen receptors (ER), liver X receptors (LXR), and vitamin D receptors (VDR) with an emphasis on recent findings over the last decade. These NRs have generated a wealth of data over the last 10 years that demonstrate their crucial role in maintaining normal renal homeostasis as well as their capacity to modulate disease progression.


Assuntos
Metabolismo dos Lipídeos , Receptores Citoplasmáticos e Nucleares , Humanos , Rim/metabolismo , Receptores X do Fígado/metabolismo , Receptores Ativados por Proliferador de Peroxissomo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...