Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275498

RESUMO

We explore the intersection of neural dynamics and the effects of psychedelics in light of distinct timescales in a framework integrating concepts from dynamics, complexity, and plasticity. We call this framework neural geometrodynamics for its parallels with general relativity's description of the interplay of spacetime and matter. The geometry of trajectories within the dynamical landscape of "fast time" dynamics are shaped by the structure of a differential equation and its connectivity parameters, which themselves evolve over "slow time" driven by state-dependent and state-independent plasticity mechanisms. Finally, the adjustment of plasticity processes (metaplasticity) takes place in an "ultraslow" time scale. Psychedelics flatten the neural landscape, leading to heightened entropy and complexity of neural dynamics, as observed in neuroimaging and modeling studies linking increases in complexity with a disruption of functional integration. We highlight the relationship between criticality, the complexity of fast neural dynamics, and synaptic plasticity. Pathological, rigid, or "canalized" neural dynamics result in an ultrastable confined repertoire, allowing slower plastic changes to consolidate them further. However, under the influence of psychedelics, the destabilizing emergence of complex dynamics leads to a more fluid and adaptable neural state in a process that is amplified by the plasticity-enhancing effects of psychedelics. This shift manifests as an acute systemic increase of disorder and a possibly longer-lasting increase in complexity affecting both short-term dynamics and long-term plastic processes. Our framework offers a holistic perspective on the acute effects of these substances and their potential long-term impacts on neural structure and function.

2.
Neuroimage ; 270: 119938, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36775081

RESUMO

Cortical function emerges from the interactions of multi-scale networks that may be studied at a high level using neural mass models (NMM) that represent the mean activity of large numbers of neurons. Here, we provide first a new framework called laminar NMM, or LaNMM for short, where we combine conduction physics with NMMs to simulate electrophysiological measurements. Then, we employ this framework to infer the location of oscillatory generators from laminar-resolved data collected from the prefrontal cortex in the macaque monkey. We define a minimal model capable of generating coupled slow and fast oscillations, and we optimize LaNMM-specific parameters to fit multi-contact recordings. We rank the candidate models using an optimization function that evaluates the match between the functional connectivity (FC) of the model and data, where FC is defined by the covariance between bipolar voltage measurements at different cortical depths. The family of best solutions reproduces the FC of the observed electrophysiology by selecting locations of pyramidal cells and their synapses that result in the generation of fast activity at superficial layers and slow activity across most depths, in line with recent literature proposals. In closing, we discuss how this hybrid modeling framework can be more generally used to infer cortical circuitry.


Assuntos
Macaca , Neurônios , Animais , Neurônios/fisiologia , Fenômenos Eletrofisiológicos
3.
J Neural Eng ; 20(1)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36548999

RESUMO

Objective.Stereotactic-electroencephalography (SEEG) and scalp EEG recordings can be modeled using mesoscale neural mass population models (NMMs). However, the relationship between those mathematical models and the physics of the measurements is unclear. In addition, it is challenging to represent SEEG data by combining NMMs and volume conductor models due to the intermediate spatial scale represented by these measurements.Approach.We provide a framework combining the multi-compartmental modeling formalism and a detailed geometrical model to simulate the transmembrane currents that appear in layer 3, 5 and 6 pyramidal cells due to a synaptic input. With this approach, it is possible to realistically simulate the current source density (CSD) depth profile inside a cortical patch due to inputs localized into a single cortical layer and the induced voltage measured by two SEEG contacts using a volume conductor model. Based on this approach, we built a framework to connect the activity of a NMM with a volume conductor model and we simulated an example of SEEG signal as a proof of concept.Main results.CSD depends strongly on the distribution of the synaptic inputs onto the different cortical layers and the equivalent current dipole strengths display substantial differences (of up to a factor of four in magnitude in our example). Thus, the inputs coming from different neural populations do not contribute equally to the electrophysiological recordings. A direct consequence of this is that the raw output of NMMs is not a good proxy for electrical recordings. We also show that the simplest CSD model that can accurately reproduce SEEG measurements can be constructed from discrete monopolar sources (one per cortical layer).Significance.Our results highlight the importance of including a physical model in NMMs to represent measurements. We provide a framework connecting microscale neuron models with the neural mass formalism and with physical models of the measurement process that can improve the accuracy of predicted electrophysiological recordings.


Assuntos
Eletroencefalografia , Imageamento Tridimensional , Eletroencefalografia/métodos , Células Piramidais , Modelos Teóricos , Neurônios
4.
J Neural Eng ; 19(5)2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35995031

RESUMO

Work in the last two decades has shown that neural mass models (NMM) can realistically reproduce and explain epileptic seizure transitions as recorded by electrophysiological methods (EEG, SEEG). In previous work, advances were achieved by increasing excitation and heuristically varying network inhibitory coupling parameters in the models. Based on these early studies, we provide a laminar NMM capable of realistically reproducing the electrical activity recorded by SEEG in the epileptogenic zone during interictal to ictal states. With the exception of the external noise input into the pyramidal cell population, the model dynamics are autonomous. By setting the system at a point close to bifurcation, seizure-like transitions are generated, including pre-ictal spikes, low voltage fast activity, and ictal rhythmic activity. A novel element in the model is a physiologically motivated algorithm for chloride dynamics: the gain of GABAergic post-synaptic potentials is modulated by the pathological accumulation of chloride in pyramidal cells due to high inhibitory input and/or dysfunctional chloride transport. In addition, in order to simulate SEEG signals for comparison with real seizure recordings, the NMM is embedded first in a layered model of the neocortex and then in a realistic physical model. We compare modeling results with data from four epilepsy patient cases. By including key pathophysiological mechanisms, the proposed framework captures succinctly the electrophysiological phenomenology observed in ictal states, paving the way for robust personalization methods based on NMMs.


Assuntos
Eletroencefalografia , Epilepsia , Cloretos , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Humanos , Células Piramidais , Convulsões/diagnóstico
5.
Micromachines (Basel) ; 13(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35208403

RESUMO

We theoretically analyze the methodology for obtaining vectorial three-dimensional bullets, concretely Airy-Gauss bullets. To do this, binary micro zonal plates (BZP) were designed in order to obtain different Airy-Gauss bullets with sub-diffraction main lobe width. Following the vectorial diffraction theory, among the electrical field, we extend the theory to the magnetic field, and thus we analyze several properties such as the Poynting vector and the energy of Airy-Gauss vectorial bullets generated by illuminating the designed BZP with a temporal Gaussian circular polarized pulses.

6.
Conscious Cogn ; 96: 103225, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34689073

RESUMO

A substantial body of research has converged on the idea that the sense of agency arises from the integration of multiple sources of information. In this study, we investigated whether a measurable sense of agency can be detected for mental actions, without the contribution of motor components. We used a fake action-effect paradigm, where participants were led to think that a motor action or a particular thought could trigger a sound. Results showed that the sense of agency, when measured through explicit reports, was of comparable strength for motor and mental actions. The intentional binding effect, a phenomenon typically associated with the experience of agency, was also observed for both motor and mental actions. Taken together, our results provide novel insights into the specific role of intentional cues in instantiating a sense of agency, even in the absence of motor signals.


Assuntos
Sinais (Psicologia) , Desempenho Psicomotor , Humanos , Resolução de Problemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...