Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 206: 108304, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159550

RESUMO

Blindness is a physiopathy characterized by apical abortion that particularly affects the Brassica family. The occurrence of blindness has been related to exposure to low temperatures during early developmental stages. However, the causes of this selective sensitivity and how they affect the correct development remain unknown. In this study, we investigated the mechanisms involved in the occurrence of blindness in broccoli plants. The analysis of RNAseq, focused on membrane transporters and the synthesis pathways of glucosinolates and phenolics, was related with physiological changes in nutrient and water uptake, gas exchange, and metabolism. Comparative gene expression analysis between control and blindness-affected broccoli plants revealed distinct regulation patterns in roots and shoots, leading to reduced synthesis of glucosinolates and phenolics. Additionally, the expression levels of aquaporins and potassium transporters were found to be associated with mineral and water transport. In this way, our results revealed the causes of blindness by identifying differentially expressed genes, highlighting those related to secondary metabolism, as well as genes involved in water and nutrient uptake and transport as the crucial involved in the physiopathy appearance.


Assuntos
Brassica , Glucosinolatos , Perfilação da Expressão Gênica , Fenóis/metabolismo , Brassica/genética , Brassica/metabolismo , Água/metabolismo
2.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769147

RESUMO

Phenolic compounds and glucosinolates are secondary plant metabolites that play fundamental roles in plant resistance to abiotic stress. These compounds have been found to increase in stress situations related to plant adaptive capacity. This review assesses the functions of phenolic compounds and glucosinolates in plant interactions involving abiotic stresses such as drought, salinity, high temperature, metals toxicity, and mineral deficiency or excess. Furthermore, their relation with water uptake and transport mediated through aquaporins is reviewed. In this way, the increases of phenolic compounds and glucosinolate synthesis have been related to primary responses to abiotic stress and induction of resistance. Thus, their metabolic pathways, root exudation, and external application are related to internal cell and tissue movement, with a lack of information in this latter aspect.


Assuntos
Glucosinolatos , Água , Água/metabolismo , Glucosinolatos/metabolismo , Plantas/metabolismo , Transporte Biológico , Estresse Fisiológico
3.
Front Plant Sci ; 12: 752648, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868141

RESUMO

Nanotechnology brings to agriculture new forms of fertilizer applications, which could be used to reduce environmental contamination and increase efficiency. In this study, foliar fertilization with nanoencapsulated boron (B) was studied in comparison to an ionic B (non-encapsulated) application in young B-deficient almond trees grown under a controlled environment. B movement within the plant in relation to the leaf gas exchange, water relations parameters, and root hydraulic conductance was measured. Also, the expression of aquaporins (AQPs) [plasma membrane intrinsic protein (PIP) and tonoplast intrinsic protein (TIP)] was studied in relation to water uptake and transport parameters to establish the effectiveness of the different B treatments. The obtained results were associated with a high concentration of observed B with nanoencapsulated B, provided by the higher permeability of carrier nanovesicles, which allowed B to reach the cell wall more efficiently. The increases in water uptake and transport obtained in these plants could be related to the role that this element played in the cell wall and the relationship that it could have in the regulation of the expression of AQPs and their involvement in water relations. Also, an increase in the expression of PIPs (mainly PIP2.2) to the applied nanoencapsulated B could be related to the need for B and water transport, and fine regulation of TIP1.1 in relation to B concentration in tissues provides an important feature in the remobilization of B within the cell.

4.
Physiol Plant ; 171(4): 595-619, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32909634

RESUMO

Environmental changes cause abiotic stress in plants, primarily through alterations in the uptake of the nutrients and water they require for their metabolism and growth and to maintain their cellular homeostasis. The plasma membranes of cells contain transporter proteins, encoded by their specific genes, responsible for the uptake of nutrients and water (aquaporins). However, their interregulation has rarely been taken into account. Therefore, in this review we identify how the plant genome responds to abiotic stresses such as nutrient deficiency, drought, salinity and low temperature, in relation to both nutrient transporters and aquaporins. Some general responses or regulation mechanisms can be observed under each abiotic stress such as the induction of plasma membrane transporter expression during macronutrient deficiency, the induction of tonoplast transporters and reduction of aquaporins during micronutrients deficiency. However, drought, salinity and low temperatures generally cause an increase in expression of nutrient transporters and aquaporins in tolerant plants. We propose that both types of transporters (nutrients and water) should be considered jointly in order to better understand plant tolerance of stresses.


Assuntos
Aquaporinas , Proteínas de Plantas , Aquaporinas/genética , Aquaporinas/metabolismo , Regulação da Expressão Gênica de Plantas , Nutrientes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Água
5.
Sci Rep ; 10(1): 22240, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335220

RESUMO

Melon (Cucumis melo L.) is a very important crop throughout the world and has great economic importance, in part due to its nutritional properties. It prefers well-drained soil with low acidity and has a strong demand for water during fruit set. Therefore, a correct water balance-involving aquaporins-is necessary to maintain the plants in optimal condition. This manuscript describes the identification and comparative analysis of the complete set of aquaporins in melon. 31 aquaporin genes were identified, classified and analysed according to the evolutionary relationship of melon with related plant species. The individual role of each aquaporin in the transport of water, ions and small molecules was discussed. Finally, qPCR revealed that almost all melon aquaporins in roots and leaves were constitutively expressed. However, the high variations in expression among them point to different roles in water and solute transport, providing important features as that CmPIP1;1 is the predominant isoform and CmTIP1;1 is revealed as the most important osmoregulator in the tonoplast under optimal conditions. The results of this work pointing to the physiological importance of each individual aquaporin of melon opening a field of knowledge that deserves to be investigated.


Assuntos
Cucumis melo/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Mapeamento Cromossômico , Cucumis melo/metabolismo , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plant Physiol Biochem ; 146: 23-30, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31722266

RESUMO

Multiwalled carbon nanotubes (MWCNTs) are tubular carbon structures that are able to enter cells through holes in the plasma membrane and produce changes in gene expression. In this work, we compared the functionality of carbon nanotubes with the electroporation that perforates membranes, in Brassica oleracea var. Italica (broccoli) root protoplasts. For this, we combined those treatments with control conditions and abiotic stress (salinity) in order to elucidate if the response is related to conditions optimal for the plant. The measurement of the osmotic water permeability (Pf), mineral concentrations and expression levels of aquaporins (PIP1s and PIP2s) revealed that the physiological action of the nanotubes was similar to that achieved with electroporation for both Pf and the concentrations of nutrients in the protoplasts. On the other hand, PIP1s and PIP2s expression was increased in the protoplasts receiving the control plus MWCNTs treatment but not in those treated with electroporation. This opens new and interesting lines, as it shows that nanotubes are able to modulate the expression of aquaporins.


Assuntos
Nanotubos de Carbono , Aquaporinas , Nutrientes , Salinidade , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...