Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139294

RESUMO

The Transactivating response (TAR) element DNA-binding of 43 kDa (TDP-43) is mainly implicated in the regulation of gene expression, playing multiple roles in RNA metabolism. Pathologically, it is implicated in amyotrophic lateral sclerosis and in a class of neurodegenerative diseases broadly going under the name of frontotemporal lobar degeneration (FTLD). A common hallmark of most forms of such diseases is the presence of TDP-43 insoluble inclusions in the cell cytosol. The molecular mechanisms of TDP-43-related cell toxicity are still unclear, and the contribution to cell damage from either loss of normal TDP-43 function or acquired toxic properties of protein aggregates is yet to be established. Here, we investigate the effects on cell viability of FTLD-related TDP-43 mutations in both yeast and mammalian cell models. Moreover, we focus on nucleolin (NCL) gene, recently identified as a genetic suppressor of TDP-43 toxicity, through a thorough structure/function characterization aimed at understanding the role of NCL domains in rescuing TDP-43-induced cytotoxicity. Using functional and biochemical assays, our data demonstrate that the N-terminus of NCL is necessary, but not sufficient, to exert its antagonizing effects on TDP-43, and further support the relevance of the DNA/RNA binding central region of the protein. Concurrently, data suggest the importance of the NCL nuclear localization for TDP-43 trafficking, possibly related to both TDP-43 physiology and toxicity.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Degeneração Lobar Frontotemporal , Nucleolina , Humanos , Esclerose Lateral Amiotrófica/metabolismo , DNA , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Nucleolina/metabolismo , RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Pediatr Neurol ; 148: 152-156, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722301

RESUMO

Loss of function of the STRADA gene, an upstream mTOR inhibitor, causes a rare neurodevelopmental disorder characterized by polyhydramnios, megalencephaly, and symptomatic epilepsy (PMSE syndrome). Patients display a homogeneous phenotype including early-onset drug-resistant epilepsy, severe psychomotor delay, multisystemic comorbidities, and increased risk of premature death. The administration of sirolimus, an mTOR inhibitor, is helpful in controlling seizures in this syndrome. We report the electroclinical phenotype of two novel patients and the development of a yeast model to validate the pathogenicity of missense variants. Patient 1 harbored a missense STRADA variant and had a peculiar electroclinical phenotype with a relatively mild epilepsy course. Patient 2 harbored a truncating STRADA variant and showed a typical PMSE phenotype and a favorable response to early treatment with sirolimus. When we modeled the p.(Ser264Arg) STRADA change in its yeast homolog SPS1, it impaired SPS1 function. The results underlie the importance of a timely molecular diagnosis in these patients and show that yeast is a simple yet effective model to validate the pathogenicity of missense variants.

3.
Cell Death Dis ; 13(10): 855, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207321

RESUMO

Calcium concentration must be finely tuned in all eukaryotic cells to ensure the correct performance of its signalling function. Neuronal activity is exquisitely dependent on the control of Ca2+ homeostasis: its alterations ultimately play a pivotal role in the origin and progression of many neurodegenerative processes. A complex toolkit of Ca2+ pumps and exchangers maintains the fluctuation of cytosolic Ca2+ concentration within the appropriate threshold. Two ubiquitous (isoforms 1 and 4) and two neuronally enriched (isoforms 2 and 3) of the plasma membrane Ca2+ATPase (PMCA pump) selectively regulate cytosolic Ca2+ transients by shaping the sub-plasma membrane (PM) microdomains. In humans, genetic mutations in ATP2B1, ATP2B2 and ATP2B3 gene have been linked with hearing loss, cerebellar ataxia and global neurodevelopmental delay: all of them were found to impair pump activity. Here we report three additional mutations in ATP2B3 gene corresponding to E1081Q, R1133Q and R696H amino acids substitution, respectively. Among them, the novel missense mutation (E1081Q) immediately upstream the C-terminal calmodulin-binding domain (CaM-BD) of the PMCA3 protein was present in two patients originating from two distinct families. Our biochemical and molecular studies on PMCA3 E1081Q mutant have revealed a splicing variant-dependent effect of the mutation in shaping the sub-PM [Ca2+]. The E1081Q substitution in the full-length b variant abolished the capacity of the pump to reduce [Ca2+] in the sub-PM microdomain (in line with the previously described ataxia-related PMCA mutations negatively affecting Ca2+ pumping activity), while, surprisingly, its introduction in the truncated a variant selectively increased Ca2+ extrusion activity in the sub-PM Ca2+ microdomains. These results highlight the importance to set a precise threshold of [Ca2+] by fine-tuning the sub-PM microdomains and the different contribution of the PMCA splice variants in this regulation.


Assuntos
Ataxia Cerebelar , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Aminoácidos , Ataxia/genética , Ataxia/metabolismo , Cálcio/metabolismo , Calmodulina/genética , Membrana Celular/metabolismo , Ataxia Cerebelar/genética , Ataxia Cerebelar/metabolismo , Humanos , Mutação/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
Antioxidants (Basel) ; 11(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453299

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the loss of motor neurons in the brain and spinal cord. While the exact causes of ALS are still unclear, the discovery that familial cases of ALS are related to mutations in the Cu/Zn superoxide dismutase (SOD1), a key antioxidant enzyme protecting cells from the deleterious effects of superoxide radicals, suggested that alterations in SOD1 functionality and/or aberrant SOD1 aggregation strongly contribute to ALS pathogenesis. A new scenario was opened in which, thanks to the generation of SOD1 related models, different mechanisms crucial for ALS progression were identified. These include excitotoxicity, oxidative stress, mitochondrial dysfunctions, and non-cell autonomous toxicity, also implicating altered Ca2+ metabolism. While most of the literature considers motor neurons as primary target of SOD1-mediated effects, here we mainly discuss the effects of SOD1 mutations in non-neuronal cells, such as glial and skeletal muscle cells, in ALS. Attention is given to the altered redox balance and Ca2+ homeostasis, two processes that are strictly related with each other. We also provide original data obtained in primary myocytes derived from hSOD1(G93A) transgenic mice, showing perturbed expression of Ca2+ transporters that may be responsible for altered mitochondrial Ca2+ fluxes. ALS-related SOD1 mutants are also responsible for early alterations of fundamental biological processes in skeletal myocytes that may impinge on skeletal muscle functions and the cross-talk between muscle cells and motor neurons during disease progression.

5.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34769284

RESUMO

Mitochondria-ER contacts (MERCs), tightly regulated by numerous tethering proteins that act as molecular and functional connections between the two organelles, are essential to maintain a variety of cellular functions. Such contacts are often compromised in the early stages of many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). TDP-43, a nuclear protein mainly involved in RNA metabolism, has been repeatedly associated with ALS pathogenesis and other neurodegenerative diseases. Although TDP-43 neuropathological mechanisms are still unclear, the accumulation of the protein in cytoplasmic inclusions may underlie a protein loss-of-function effect. Accordingly, we investigated the impact of siRNA-mediated TDP-43 silencing on MERCs and the related cellular parameters in HeLa cells using GFP-based probes for MERCs quantification and aequorin-based probes for local Ca2+ measurements, combined with targeted protein and mRNA profiling. Our results demonstrated that TDP-43 down-regulation decreases MERCs density, thereby remarkably reducing mitochondria Ca2+ uptake after ER Ca2+ release. Thorough mRNA and protein analyses did not highlight altered expression of proteins involved in MERCs assembly or Ca2+-mediated ER-mitochondria cross-talk, nor alterations of mitochondrial density and morphology were observed by confocal microscopy. Further mechanistic inspections, however, suggested that the observed cellular alterations are correlated to increased expression/activity of GSK3ß, previously associated with MERCs disruption.


Assuntos
Cálcio/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Mitocôndrias/metabolismo , Transdução de Sinais
6.
Front Cell Neurosci ; 15: 625665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912014

RESUMO

TDP-43 is a nuclear protein involved in pivotal processes, extensively studied for its implication in neurodegenerative disorders. TDP-43 cytosolic inclusions are a common neuropathologic hallmark in amyotrophic lateral sclerosis (ALS) and related diseases, and it is now established that TDP-43 misfolding and aggregation play a key role in their etiopathology. TDP-43 neurotoxic mechanisms are not yet clarified, but the identification of proteins able to modulate TDP-43-mediated damage may be promising therapeutic targets for TDP-43 proteinopathies. Here we show by the use of refined yeast models that the nucleolar protein nucleolin (NCL) acts as a potent suppressor of TDP-43 toxicity, restoring cell viability. We provide evidence that NCL co-expression is able to alleviate TDP-43-induced damage also in human cells, further supporting its beneficial effects in a more consistent pathophysiological context. Presented data suggest that NCL could promote TDP-43 nuclear retention, reducing the formation of toxic cytosolic TDP-43 inclusions.

7.
Food Microbiol ; 97: 103753, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33653526

RESUMO

Saccharomyces cerevisiae has long been part of human activities related to the production of food and wine. The industrial demand for fermented beverages with well-defined and stable characteristics boosted the isolation and selection of strains conferring a distinctive aroma profile to the final product. To uncover variants characterizing oenological strains, the sequencing of 65 new S. cerevisiae isolates, and the comparison with other 503 publicly available genomes were performed. A hybrid approach based on short Illumina and long Oxford Nanopore reads allowed the in-depth investigation of eleven genomes and the identification of putative laterally transferred regions and structural variants. A comparative analysis between clusters of strains belonging to different datasets allowed the identification of novel relevant genetic features including single nucleotide polymorphisms, insertions and structural variants. Detection of oenological single nucleotide variants shed light on the existence of different levels of modulation for the mevalonate pathway relevant for the biosynthesis of aromatic compounds.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae/genética , Fermentação , Aromatizantes/química , Aromatizantes/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Polimorfismo de Nucleotídeo Único , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/metabolismo
8.
Sci Rep ; 10(1): 15850, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985545

RESUMO

Mutations of the von Hippel-Lindau (pVHL) tumor suppressor are causative of a familiar predisposition to develop different types of cancer. pVHL is mainly known for its role in regulating hypoxia-inducible factor 1 α (HIF-1α) degradation, thus modulating the hypoxia response. There are different pVHL isoforms, including pVHL30 and pVHL19. However, little is known about isoform-specific functions and protein-protein interactions. Integrating in silico predictions with in vitro and in vivo assays, we describe a novel interaction between pVHL and mouse double minute 2 homolog (MDM2). We found that pVHL30, and not pVHL19, forms a complex with MDM2, and that the N-terminal acidic tail of pVHL30 is required for its association with MDM2. Further, we demonstrate that an intrinsically disordered region upstream of the tetramerization domain of MDM2 is responsible for its isoform-specific association with pVHL30. This region is highly conserved in higher mammals, including primates, similarly to what has been already shown for the N-terminal tail of pVHL30. Finally, we show that overexpression of pVHL30 and MDM2 together reduces cell metabolic activity and necrosis, suggesting a synergistic effect of these E3 ubiquitin ligases. Collectively, our data show an isoform-specific interaction of pVHL with MDM2, suggesting an interplay between these two E3 ubiquitin ligases.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Simulação por Computador , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
9.
Neurobiol Dis ; 115: 157-166, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29655659

RESUMO

The fine regulation of intracellular calcium is fundamental for all eukaryotic cells. In neurons, Ca2+ oscillations govern the synaptic development, the release of neurotransmitters and the expression of several genes. Alterations of Ca2+ homeostasis were found to play a pivotal role in neurodegenerative progression. The maintenance of proper Ca2+ signaling in neurons demands the continuous activity of Ca2+ pumps and exchangers to guarantee physiological cytosolic concentration of the cation. The plasma membrane Ca2+ATPases (PMCA pumps) play a key role in the regulation of Ca2+ handling in selected sub-plasma membrane microdomains. Among the four basic PMCA pump isoforms existing in mammals, isoforms 2 and 3 are particularly enriched in the nervous system. In humans, genetic mutations in the PMCA2 gene in association with cadherin 23 mutations have been linked to hearing loss phenotypes, while those occurring in the PMCA3 gene were associated with X-linked congenital cerebellar ataxias. Here we describe a novel missense mutation (V1143F) in the calmodulin binding domain (CaM-BD) of the PMCA2 protein. The mutant pump was present in a patient showing congenital cerebellar ataxia but no overt signs of deafness, in line with the absence of mutations in the cadherin 23 gene. Biochemical and molecular dynamics studies on the mutated PMCA2 have revealed that the V1143F substitution alters the binding of calmodulin to the CaM-BD leading to impaired Ca2+ ejection.


Assuntos
Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/genética , Mutação/genética , Neurônios/patologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Adulto , Sinalização do Cálcio/fisiologia , Calmodulina/metabolismo , Ataxia Cerebelar/metabolismo , Humanos , Masculino , Neurônios/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Ligação Proteica/fisiologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína
10.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3303-3312, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28807751

RESUMO

The neuron-restricted isoform 3 of the plasma membrane Ca2+ ATPase plays a major role in the regulation of Ca2+ homeostasis in the brain, where the precise control of Ca2+ signaling is a necessity. Several function-affecting genetic mutations in the PMCA3 pump associated to X-linked congenital cerebellar ataxias have indeed been described. Interestingly, the presence of co-occurring mutations in additional genes suggest their synergistic action in generating the neurological phenotype as digenic modulators of the role of PMCA3 in the pathologies. Here we report a novel PMCA3 mutation (G733R substitution) in the catalytic P-domain of the pump in a patient affected by non-progressive ataxia, muscular hypotonia, dysmetria and nystagmus. Biochemical studies of the pump have revealed impaired ability to control cellular Ca2+ handling both under basal and under stimulated conditions. A combined analysis by homology modeling and molecular dynamics have revealed a role for the mutated residue in maintaining the correct 3D configuration of the local structure of the pump. Mutation analysis in the patient has revealed two additional function-impairing compound heterozygous missense mutations (R123Q and G214S substitution) in phosphomannomutase 2 (PMM2), a protein that catalyzes the isomerization of mannose 6-phosphate to mannose 1-phosphate. These mutations are known to be associated with Type Ia congenital disorder of glycosylation (PMM2-CDG), the most common group of disorders of N-glycosylation. The findings highlight the association of PMCA3 mutations to cerebellar ataxia and strengthen the possibility that PMCAs act as digenic modulators in Ca2+-linked pathologies.


Assuntos
Ataxia/genética , Ataxia/metabolismo , Defeitos Congênitos da Glicosilação/metabolismo , Mutação de Sentido Incorreto , Fosfotransferases (Fosfomutases)/deficiência , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cálcio/metabolismo , Pré-Escolar , Defeitos Congênitos da Glicosilação/diagnóstico por imagem , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Glicosilação , Células HeLa , Humanos , Masculino , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
11.
Sci Rep ; 7(1): 6521, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747684

RESUMO

A finely tuned Ca2+ homeostasis in restricted cell domains is of fundamental importance for neurons, where transient Ca2+ oscillations direct the proper coordination of electro-chemical signals and overall neuronal metabolism. Once such a precise regulation is unbalanced, however, neuronal functions and viability are severely compromised. Accordingly, disturbed Ca2+ metabolism has often been claimed as a major contributor to different neurodegenerative disorders, such as amyotrophic lateral sclerosis that is characterised by selective motor neuron (MN) damage. This notion highlights the need for probes for the specific and precise analysis of local Ca2+ dynamics in MNs. Here, we generated and functionally validated adeno-associated viral vectors for the expression of gene-encoded fluorescent Ca2+ indicators targeted to different cell domains, under the transcriptional control of a MN-specific promoter. We demonstrated that the probes are specifically expressed, and allow reliable local Ca2+ measurements, in MNs from murine primary spinal cord cultures, and can also be expressed in spinal cord MNs in vivo, upon systemic administration to newborn mice. Preliminary analyses using these novel vectors have shown larger cytosolic Ca2+ responses following stimulation of AMPA receptors in the cytosol of primary cultured MNs from a murine genetic model of ALS compared to the healthy counterpart.


Assuntos
Cálcio/metabolismo , Dependovirus/genética , Corantes Fluorescentes/análise , Genes Reporter , Vetores Genéticos , Homeostase , Neurônios Motores/fisiologia , Animais , Camundongos
12.
Sci Rep ; 7: 46562, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425505

RESUMO

Germline inactivation of the von Hippel-Lindau (VHL) tumor suppressor predisposes patients to develop different highly vascularized cancers. pVHL targets the hypoxia-inducible transcription factor (HIF-1α) for degradation, modulating the activation of various genes involved in hypoxia response. Hypoxia plays a relevant role in regulating cell cycle progression, inducing growth arrest in cells exposed to prolonged oxygen deprivation. However, the exact molecular details driving this transition are far from understood. Here, we present novel interactions between pVHL and the cyclin-dependent kinase inhibitor family CDKN1 (p21, p27 and p57). Bioinformatics analysis, yeast two-hybrid screening and co-immunoprecipitation assays were used to predict, dissect and validate the interactions. We found that the CDKN1 proteins share a conserved region mimicking the HIF-1α motif responsible for pVHL binding. Intriguingly, a p27 site-specific mutation associated to cancer is shown to modulate this novel interaction. Our findings suggest a new connection between the pathways regulating hypoxia and cell cycle progression.


Assuntos
Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Genes Supressores de Tumor , Mapas de Interação de Proteínas , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Sequência de Aminoácidos , Ciclo Celular/genética , Hipóxia Celular , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido , Proteína Supressora de Tumor Von Hippel-Lindau/genética
13.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 165-173, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27632770

RESUMO

The plasma membrane Ca2+ ATPases (PMCA pumps) have a long, cytosolic C-terminal regulatory region where a calmodulin-binding domain (CaM-BD) is located. Under basal conditions (low Ca2+), the C-terminal tail of the pump interacts with autoinhibitory sites proximal to the active center of the enzyme. In activating conditions (i.e., high Ca2+), Ca2+-bound CaM displaces the C-terminal tail from the autoinhibitory sites, restoring activity. We have recently identified a G1107D replacement within the CaM-BD of isoform 3 of the PMCA pump in a family affected by X-linked congenital cerebellar ataxia. Here, we investigate the effects of the G1107D replacement on the interplay of the mutated CaM-BD with both CaM and the pump core, by combining computational, biochemical and functional approaches. We provide evidence that the affinity of the isolated mutated CaM-BD for CaM is significantly reduced with respect to the wild type (wt) counterpart, and that the ability of CaM to activate the pump in vitro is thus decreased. Multiscale simulations support the conclusions on the detrimental effect of the mutation, indicating reduced stability of the CaM binding. We further show that the G1107D replacement impairs the autoinhibition mechanism of the PMCA3 pump as well, as the introduction of a negative charge perturbs the contacts between the CaM-BD and the pump core. Thus, the mutation affects both the ability of the pump to optimally transport Ca2+ in the activated state, and the autoinhibition mechanism in its resting state.


Assuntos
Ataxia/genética , Calmodulina/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Mutação Puntual , Ataxia/metabolismo , Sinalização do Cálcio , Humanos , Modelos Moleculares , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
14.
Dis Model Mech ; 9(5): 553-62, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27013529

RESUMO

The shaker rat is an X-linked recessive spontaneous model of progressive Purkinje cell (PC) degeneration exhibiting a shaking ataxia and wide stance. Generation of Wistar Furth (WF)/Brown Norwegian (BN) F1 hybrids and genetic mapping of F2 sib-sib offspring using polymorphic markers narrowed the candidate gene region to 26 Mbp denoted by the last recombinant genetic marker DXRat21 at 133 Mbp to qter (the end of the long arm). In the WF background, the shaker mutation has complete penetrance, results in a stereotypic phenotype and there is a narrow window for age of disease onset; by contrast, the F2 hybrid phenotype was more varied, with a later age of onset and likely non-penetrance of the mutation. By deep RNA-sequencing, five variants were found in the candidate region; four were novel without known annotation. One of the variants caused an arginine (R) to cysteine (C) change at codon 35 of the ATPase, Ca(2+) transporting, plasma membrane 3 (Atp2b3) gene encoding PMCA3 that has high expression in the cerebellum. The variant was well supported by hundreds of overlapping reads, and was found in 100% of all affected replicas and 0% of the wild-type (WT) replicas. The mutation segregated with disease in all affected animals and the amino acid change was found in an evolutionarily conserved region of PMCA3. Despite strong genetic evidence for pathogenicity, in vitro analyses of PMCA3(R35C) function did not show any differences to WT PMCA3. Because Atp2b3 mutation leads to congenital ataxia in humans, the identified Atp2b3 missense change in the shaker rat presents a good candidate for the shaker rat phenotype based on genetic criteria, but cannot yet be considered a definite pathogenic variant owing to lack of functional changes.


Assuntos
Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Mutação/genética , Tremor/genética , Tremor/patologia , Animais , Comportamento Animal , Cálcio/metabolismo , Mapeamento Cromossômico , Modelos Animais de Doenças , Feminino , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Teste de Complementação Genética , Humanos , Masculino , Proteínas Mutantes/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Células de Purkinje/patologia , Ratos Endogâmicos WF , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de RNA , Expansão das Repetições de Trinucleotídeos/genética
15.
PLoS Curr ; 82016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26819834

RESUMO

Huntington disease (HD) is caused by the CAG (Q) expansion in exon 1 of the IT15 gene encoding a polyglutamine (poly-Q) stretch of the Huntingtin protein (Htt). In the wild type protein, the repeats specify a stretch of up 34 Q in the N-terminal portion of Htt. In the pathological protein (mHtt) the poly-Q tract is longer. Proteolytic cleavage of the protein liberates an N-terminal fragment containing the expanded poly-Q tract becomes harmful to cells, in particular to striatal neurons. The fragments cause the transcriptional dysfunction of genes that are essential for neuronal survival. Htt, however, could also have non-transcriptional effects, e.g. it could directly alter Ca2+ homeostasis and/or mitochondrial morphology and function. Ca2+ dyshomeostasis and mitochondrial dysfunction are considered important in the molecular aetiology of the disease. Here we have analyzed the effect of the overexpression of Htt fragments (18Q, wild type form, wtHtt and 150Q mutated form, mHtt) on Ca2+ homeostasis in striatal neuronal precursor cells (Q7/7). We have found that the transient overexpression of the Htt fragments increases Ca2+ transients in the mitochondria of cells stimulated with Ca2+-mobilizing agonists. The bulk Ca2+ transients in the cytosol were unaffected, but the Ca2+ content of the endoplasmic reticulum was significantly decreased in the case of mHtt expression. To rule out possible transcriptional effects due to the presence of mHtt, we have measured the mRNA level of a subunit of the respiratory chain complex II, whose expression is commonly altered in many HD models. No effects on the mRNA level was found suggesting that, in our experimental condition, transcriptional action of Htt is not occurring and that the effects on Ca2+ homeostasis were dependent to non-transcriptional mechanisms.

16.
JIMD Rep ; 28: 119-126, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26589310

RESUMO

Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is an autosomal recessive metabolic disorder usually presenting in the neonatal period with intermittent episodes of hyperammonemia, psychomotor delay, and progressive encephalopathy. Adult cases usually evolve into frank spastic paraparesis. The syndrome is caused by mutations in SLC25A15/ORNT1 encoding the mitochondrial ornithine transporter; a second ornithine transporter, ORNT2 of unknown function, is also present in most placental mammals. ORNT2 is believed to originate from an ancient retro-transposition event. In yeast Saccharomyces cerevisiae the major function of the transporter (encoded by Arg11) is to shuttle ornithine from the mitochondrial matrix to the cytosol. Its inactivation abolishes growth in the absence of arginine.In this work, we used functional complementation in S. cerevisiae to characterize the function of human ORNT2 and to test the pathogenicity of ORNT1 mutations found in HHH patients. Notably, we found that human ORNT1 but not ORNT2 complements the deletion of the yeast gene, despite their high level of homology. However, we identified some key residues in ORNT2, which may recover its functional competence when replaced with the corresponding residues of ORNT1, suggesting that roles of the two transporters are different. Moreover, we used this system to test a series of missense mutations of ORNT1 identified in patients with HHH syndrome. All mutations had a detrimental effect on the functionality of the human gene, without however clear genotype-phenotype correlations. Our data support yeast as a simple and effective model to validate missense mutations occurring in patients with HHH.

17.
J Biol Chem ; 290(26): 16132-41, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25953895

RESUMO

The particular importance of Ca(2+) signaling to neurons demands its precise regulation within their cytoplasm. Isoform 3 of the plasma membrane Ca(2+) ATPase (the PMCA3 pump), which is highly expressed in brain and cerebellum, plays an important role in the regulation of neuronal Ca(2+). A genetic defect of the PMCA3 pump has been described in one family with X-linked congenital cerebellar ataxia. Here we describe a novel mutation in the ATP2B3 gene in a patient with global developmental delay, generalized hypotonia and cerebellar ataxia. The mutation (a R482H replacement) impairs the Ca(2+) ejection function of the pump. It reduces the ability of the pump expressed in model cells to control Ca(2+) transients generated by cell stimulation and impairs its Ca(2+) extrusion function under conditions of low resting cytosolic Ca(2+) as well. In silico analysis of the structural effect of the mutation suggests a reduced stabilization of the portion of the pump surrounding the mutated residue in the Ca(2+)-bound state. The patient also carries two missense mutations in LAMA1, encoding laminin subunit 1α. On the basis of the family pedigree of the patient, the presence of both PMCA3 and laminin subunit 1α mutations appears to be necessary for the development of the disease. Considering the observed defect in cellular Ca(2+) homeostasis and the previous finding that PMCAs act as digenic modulators in Ca(2+)-linked pathologies, the PMCA3 dysfunction along with LAMA1 mutations could act synergistically to cause the neurological phenotype.


Assuntos
Cálcio/metabolismo , Ataxia Cerebelar/metabolismo , Laminina/metabolismo , Mutação de Sentido Incorreto , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Adulto , Sequência de Aminoácidos , Ataxia Cerebelar/genética , Criança , Feminino , Homeostase , Humanos , Laminina/química , Laminina/genética , Masculino , Dados de Sequência Molecular , Linhagem , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Alinhamento de Sequência
18.
J Biol Chem ; 289(15): 10261-10268, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24570005

RESUMO

The three-dimensional structure of the PMCA pump has not been solved, but its basic mechanistic properties are known to repeat those of the other Ca(2+) pumps. However, the pump also has unique properties. They concern essentially its numerous regulatory mechanisms, the most important of which is the autoinhibition by its C-terminal tail. Other regulatory mechanisms involve protein kinases and the phospholipids of the membrane in which the pump is embedded. Permanent activation of the pump, e.g. by calmodulin, is physiologically as harmful to cells as its absence. The concept is now emerging that the global control of cell Ca(2+) may not be the main function of the pump; in some cell types, it could even be irrelevant. The main pump role would be the regulation of Ca(2+) in cell microdomains in which the pump co-segregates with partners that modulate the Ca(2+) message and transduce it to important cell functions.


Assuntos
Cálcio/química , Membrana Celular/enzimologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Processamento Alternativo , Animais , Arabidopsis/enzimologia , Sinalização do Cálcio , ATPases Transportadoras de Cálcio/química , Calmodulina/química , Humanos , Microdomínios da Membrana/enzimologia , Fosfolipídeos/química , Ligação Proteica , Isoformas de Proteínas/química , Estrutura Terciária de Proteína
19.
Cell Calcium ; 50(6): 569-76, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22047666

RESUMO

The inner ear converts sound waves into hearing signals through the mechanoelectrical transduction (MET) process. Deflection of the stereocilia bundle of hair cells causes the opening of channels that allow the entry of endolymph K(+) and Ca(2+). Ca(2+) that enters is crucial to the hearing process and is exported to the endolymph by the plasma membrane Ca(2+) pump (isoform PMCA2w/a): disturbances of the balance between Ca(2+) penetration and ejection, e.g. by pump mutations, generate deafness. Hearing loss caused by PMCA defects is frequently exacerbated by mutations in cadherin 23, a single pass stereociliar Ca(2+) binding protein that forms the tip links which permit the deflection of the stereocilia bundle and thus the opening of the MET channels. The PMCA2w/a pump ejects Ca(2+) to the endolymph even in the absence of the natural activator calmodulin. This satisfies the special Ca(2+) homeostasis requirements of the stereocilia/endolymph system. Here we have analyzed a mice and a human previously described pump mutant. The human mutant only exacerbated the deafness produced by a cadherin 23 mutation. The murine mutant overexpressed in model cells displayed an evident defect both in the basal activity of the pump and in the long range ejection of Ca(2+), the human mutant instead failed to impair the Ca(2+) ejection by the pump.


Assuntos
Sinalização do Cálcio/genética , Surdez/genética , Mutação , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Fura-2/análogos & derivados , Células HeLa , Humanos , Camundongos
20.
Biofactors ; 37(3): 206-18, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21674644

RESUMO

Huntington's disease (HD) is caused by a mutation that increases the number of CAG repeats in the gene encoding for the protein Huntingtin (Htt). The mutation results in the pathological expansion of the polyQ stretch that is normally present within the N-terminal region of Htt. Even if Htt is ubiquitously expressed in tissues, the changes in the protein finally result in the clinical manifestation of motor and cognitive impairments observed in HD patients. The molecular ethiology of the disease is obscure: a number of cellular and animal models are used as essential tools in experimental approaches aimed at understanding it. Biochemical changes have been described that correlate with the malfunction of HD neurons (primarily in the striatum): consensus is gradually emerging that the dyshomeostasis of Ca(2+) and/or mitochondria stress are important factors in the linkage of the Htt mutation to the onset and progression of the disease. Here, we present a succint overview of the changes of Htt, of its possible effect on the transcription of critical genes and of its causative role in the disturbance of the neuronal Ca(2+) homeostasis. Particular emphasis will be placed on the role of mitochondria as key player in the molecular pathogenesis of the disease.


Assuntos
Cálcio/metabolismo , Doença de Huntington/metabolismo , Mitocôndrias/metabolismo , Animais , Humanos , Doença de Huntington/patologia , Modelos Biológicos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...