Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 80(11): M2522-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26444985

RESUMO

UNLABELLED: Encapsulation of hydrophobic plant essential oil components (EOC) into surfactant micelles can assist the decontamination of fresh produce surfaces from bacterial pathogens during postharvest washing. Loading of eugenol and carvacrol into surfactant micelles of polysorbate 20 (Tween 20), Surfynol® 485W, sodium dodecyl sulfate (SDS), and CytoGuard® LA 20 (CG20) was determined by identification of the EOC/surfactant-specific maximum additive concentration (MAC). Rheological behavior of dilute EOC-containing micelles was then tested to determine micelle tolerance to shearing. Antimicrobial efficacy of EOC micelles against Escherichia coli O157:H7 and Salmonella enterica serotype Saintpaul was first evaluated by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Pathogen-inoculated spinach was treated with eugenol-containing micelles applied via spraying or immersion methods. SDS micelles produced the highest MACs for EOCs, while Tween 20 loaded the lowest amount of EOCs. Micelles demonstrated Newtonian behavior in response to shearing. SDS and CG20-derived micelles containing EOCs produced the lowest MICs and MBCs for pathogens. E. coli O157:H7 and S. Saintpaul were reduced on spinach surfaces by application of eugenol micelles, though no differences in numbers of surviving pathogens were observed when methods of antimicrobial micelle application (spraying, immersion) was compared (P ≥ 0.05). Data suggest eugenol in SDS and CG20 micelles may be useful for produce surface decontamination from bacterial pathogens during postharvest washing. PRACTICAL APPLICATION: Antimicrobial essential oil component (EOC)-containing micelles assist the delivery of natural food antimicrobials to food surfaces, including fresh produce, for decontamination of microbial foodborne pathogens. Antimicrobial EOC-loaded micelles were able to inhibit the enteric pathogens Escherichia coli O157:H7 and Salmonella Saintpaul in liquid medium and on spinach surfaces. However, pathogen reduction generally was not impacted by the method of micelle application (spraying, immersion washing) on spinach surfaces.


Assuntos
Antibacterianos/farmacologia , Escherichia coli O157/efeitos dos fármacos , Micelas , Extratos Vegetais/farmacologia , Salmonella enterica/efeitos dos fármacos , Spinacia oleracea/microbiologia , Tensoativos , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Cimenos , Descontaminação/métodos , Eugenol/farmacologia , Microbiologia de Alimentos , Humanos , Testes de Sensibilidade Microbiana , Monoterpenos/farmacologia , Folhas de Planta/microbiologia , Verduras/microbiologia
2.
J Food Sci ; 80(10): N2305-15, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26375302

RESUMO

UNLABELLED: Trans-cinnamaldehyde incorporated chitosan-alginate nanoparticles were synthesized using the ionic gelation and polyelectrolyte complexation technique. Alginate, chitosan, calcium chloride, and trans-cinnamaldehyde at predetermined concentrations were complexed electrostatically to optimize particle size and loading efficiency. A final methodology using optimized processing parameters (for example, stirring time, homogenization time, equilibration time, and droplet size) was developed. The best working alginate to chitosan mass ratio was determined to be 1.5:1 at a pH dispersion of 4.7. Particle size (166.26 nm) and encapsulation efficiency (73.24%) were further optimized at this mass ratio using an alginate:calcium chloride mass ratio of 4.8:1, alginate:trans-cinnamaldehyde mass ratio of 37.5:1, a 18 gauge syringe needle, stirring times of 90 min, 15 min of homogenization at 21000 rpm, and equilibration time of 24 h. Optimized nanoparticles showed increased stability (6 wk) and translucency in solution. The final radical scavenging effect of loaded particles in apple juice was 62% and trans-cinnamaldehyde was just as available to react in free form as it was in inclusion complexes. The final nanoparticle system with modified and optimized processing parameters reduced the size by 43.6% and increased entrapment efficiency by 17.2%. Nanoparticles resembled a spherical shell and core type arrangement (that is, spherical, distinct, and regular) and were in the size range of 10 to 100 nm. PRACTICAL APPLICATION: Nanoencapsulation of lipophilic antimicrobial and antioxidant compounds has the potential to improve their effectiveness and efficiency of delivery in food systems. Determining a standard nanoparticle synthesis methodology and optimizing entrapment efficiency and particle size prior to characterization studies allows for improved understanding of nanosystems and substantiates results. This study demonstrates the potential to improve current nanoparticle preparation techniques to fine tune critical physical parameters. The results presented in this study can aid in developing new and simple ways to improve nanoparticle formulations and prompt further studies to validate entrapment of lipophilic compounds combinations.


Assuntos
Acroleína/análogos & derivados , Alginatos/química , Quitosana/química , Nanopartículas/química , Tamanho da Partícula , Acroleína/administração & dosagem , Antioxidantes/administração & dosagem , Cloreto de Cálcio/química , Química Farmacêutica , Géis , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Nanocápsulas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...