Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 34(4): 108669, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503431

RESUMO

Replication stress response ensures impediments to DNA replication do not compromise replication fork stability and genome integrity. In a process termed replication fork protection, newly synthesized DNA at stalled replication forks is stabilized and protected from nuclease-mediated degradation. We report the identification of DDB1- and CUL4-associated factor 14 (DCAF14), a substrate receptor for Cullin4-RING E3 ligase (CRL4) complex, integral in stabilizing stalled replication forks. DCAF14 localizes rapidly to stalled forks and promotes genome integrity by preventing fork collapse into double-strand breaks (DSBs). Importantly, CRL4DCAF14 mediates stalled fork protection in a RAD51-dependent manner to protect nascent DNA from MRE11 and DNA2 nucleases. Thus, our study shows replication stress response functions of DCAF14 in genome maintenance.


Assuntos
Replicação do DNA , DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Origem de Replicação , DNA/biossíntese , Instabilidade Genômica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligação Proteica
2.
Neuroscience ; 453: 312-323, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33246057

RESUMO

Tau is a microtubule-associated protein that serves as a promoter of microtubule assembly and stability in neuron cells. In a collective group of neurodegenerative diseases called tauopathies, tau processing is altered as a result of gene mutations and post-translational modifications. In particular, in Alzheimer's disease (AD) or AD-like conditions, tau becomes hyperphosphorylated and forms toxic aggregates inside the cell. The chaperone heat shock protein 90 (Hsp90) plays an important role in the proper folding, degradation, and recycling of tau proteins and tau kinases. Hsp90 has many co-chaperones that aid in tau processing. In particular, a few of these co-chaperones, such as FK506-binding protein (FKBP) 51, protein phosphatase (PP) 5, cell division cycle 37 (Cdc37), and S100A1 have family members that are reported to affect Hsp90-mediated tau processing in either a similar or an opposite manner. Here, we provide a holistic review of these selected co-chaperones and their family proteins and introduce a novel Hsp90-binding Cdc37 relative, Cdc37-like-1 (Cdc37L1 or L1) in tau regulation. Overall, the proteins discussed here highlight the importance of studying family proteins in order to fully understand the mechanism of tau pathogenesis and to establish drug targets for the treatment of tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Proteínas de Ciclo Celular , Proteínas de Choque Térmico HSP90 , Humanos , Chaperonas Moleculares , Proteínas tau
3.
Front Neurosci ; 13: 1263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824256

RESUMO

Alzheimer's, Huntington's, and Parkinson's are devastating neurodegenerative diseases that are prevalent in the aging population. Patient care costs continue to rise each year, because there is currently no cure or disease modifying treatments for these diseases. Numerous efforts have been made to understand the molecular interactions governing the disease development. These efforts have revealed that the phosphorylation of proteins by kinases may play a critical role in the aggregation of disease-associated proteins, which is thought to contribute to neurodegeneration. Interestingly, a molecular chaperone complex consisting of the 90 kDa heat shock protein (Hsp90) and Cell Division Cycle 37 (Cdc37) has been shown to regulate the maturation of many of these kinases as well as regulate some disease-associated proteins directly. Thus, the Hsp90/Cdc37 complex may represent a potential drug target for regulating proteins linked to neurodegenerative diseases, through both direct and indirect interactions. Herein, we discuss the broad understanding of many Hsp90/Cdc37 pathways and how this protein complex may be a useful target to regulate the progression of neurodegenerative disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...