Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 13(5): 969-970, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28282258

RESUMO

Autophagy is a cellular degradation pathway that is essential to maintain cellular physiology, and deregulation of autophagy leads to multiple diseases in humans. In a recent study, we discovered that the protein kinase WNK1 (WNK lysine deficient protein kinase 1) is an inhibitor of autophagy. The loss of WNK1 increases both basal and starvation-induced autophagy. In addition, the depletion of WNK1 increases the activation of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex, which is required to induce autophagy. Moreover, the loss of WNK1 increases the expression of ULK1 (unc-51 like kinase 1), which is upstream of the PtdIns3K complex. It also increases the pro-autophagic phosphorylation of ULK1 at Ser555 and the activation of AMPK (AMP-activated protein kinase), which is responsible for that phosphorylation. The inhibition of AMPK by compound C decreases the magnitude of autophagy induction following WNK1 loss; however, it does not prevent autophagy induction. We found that the UVRAG (UV radiation resistance associated gene), which is a component of the PtdIns3K, binds to the N-terminal region of WNK1. Moreover, WNK1 partially colocalizes with UVRAG and this colocalization decreases when autophagy is stimulated in cells. The loss of WNK1 also alters the cellular distribution of UVRAG. The depletion of the downstream target of WNK1, OXSR1/OSR1 (oxidative-stress responsive 1) has no effect on autophagy, whereas the depletion of its relative STK39/SPAK (serine/threonine kinase 39) induces autophagy under nutrient-rich and starved conditions.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/fisiologia , Transdução de Sinais/fisiologia , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Animais , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(50): 14342-14347, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911840

RESUMO

The with-no-lysine (K) (WNK) kinases are an atypical family of protein kinases that regulate ion transport across cell membranes. Mutations that result in their overexpression cause hypertension-related disorders in humans. Of the four mammalian WNKs, only WNK1 is expressed throughout the body. We report that WNK1 inhibits autophagy, an intracellular degradation pathway implicated in several human diseases. Using small-interfering RNA-mediated WNK1 knockdown, we show autophagosome formation and autophagic flux are accelerated. In cells with reduced WNK1, basal and starvation-induced autophagy is increased. We also show that depletion of WNK1 stimulates focal class III phosphatidylinositol 3-kinase complex (PI3KC3) activity, which is required to induce autophagy. Depletion of WNK1 increases the expression of the PI3KC3 upstream regulator unc-51-like kinase 1 (ULK1), its phosphorylation, and activation of the kinase upstream of ULK1, the AMP-activated protein kinase. In addition, we show that the N-terminal region of WNK1 binds to the UV radiation resistance-associated gene (UVRAG) in vitro and WNK1 partially colocalizes with UVRAG, a component of a PI3KC3 complex. This colocalization decreases upon starvation of cells. Depletion of the SPS/STE20-related proline-alanine-rich kinase, a WNK1-activated enzyme, also induces autophagy in nutrient-replete or -starved conditions, but depletion of the related kinase and WNK1 substrate, oxidative stress responsive 1, does not. These results indicate that WNK1 inhibits autophagy by multiple mechanisms.


Assuntos
Autofagia/fisiologia , Proteína Quinase 1 Deficiente de Lisina WNK/fisiologia , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Linhagem Celular , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/antagonistas & inibidores , Proteína Quinase 1 Deficiente de Lisina WNK/genética
3.
Proc Natl Acad Sci U S A ; 110(47): 18826-31, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24191005

RESUMO

The Ste20 family protein kinases oxidative stress-responsive 1 (OSR1) and the STE20/SPS1-related proline-, alanine-rich kinase directly regulate the solute carrier 12 family of cation-chloride cotransporters and thereby modulate a range of processes including cell volume homeostasis, blood pressure, hearing, and kidney function. OSR1 and STE20/SPS1-related proline-, alanine-rich kinase are activated by with no lysine [K] protein kinases that phosphorylate the essential activation loop regulatory site on these kinases. We found that inhibition of phosphoinositide 3-kinase (PI3K) reduced OSR1 activation by osmotic stress. Inhibition of the PI3K target pathway, the mammalian target of rapamycin complex 2 (mTORC2), by depletion of Sin1, one of its components, decreased activation of OSR1 by sorbitol and reduced activity of the OSR1 substrate, the sodium, potassium, two chloride cotransporter, in HeLa cells. OSR1 activity was also reduced with a pharmacological inhibitor of mTOR. mTORC2 phosphorylated OSR1 on S339 in vitro, and mutation of this residue eliminated OSR1 phosphorylation by mTORC2. Thus, we identify a previously unrecognized connection of the PI3K pathway through mTORC2 to a Ste20 protein kinase and ion homeostasis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pressão Osmótica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Análise de Variância , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Alvo Mecanístico do Complexo 2 de Rapamicina , Antígenos de Histocompatibilidade Menor , Complexos Multiproteicos/metabolismo , Oligonucleotídeos/genética , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , RNA Interferente Pequeno/genética , Sorbitol , Serina-Treonina Quinases TOR/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK
4.
Mol Endocrinol ; 27(8): 1188-97, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23820899

RESUMO

G protein-coupled receptors (GPCRs) are membrane proteins that recognize molecules in the extracellular milieu and transmit signals inside cells to regulate their behaviors. Ligands for many GPCRs are hormones or neurotransmitters that direct coordinated, stereotyped adaptive responses. Ligands for other GPCRs provide information to cells about the extracellular environment. Such information facilitates context-specific decision making that may be cell autonomous. Among ligands that are important for cellular decisions are amino acids, required for continued protein synthesis, as metabolic starting materials and energy sources. Amino acids are detected by a number of class C GPCRs. One cluster of amino acid-sensing class C GPCRs includes umami and sweet taste receptors, GPRC6A, and the calcium-sensing receptor. We have recently found that the umami taste receptor heterodimer T1R1/T1R3 is a sensor of amino acid availability that regulates the activity of the mammalian target of rapamycin. This review focuses on an array of findings on sensing amino acids and sweet molecules outside of neurons by this cluster of class C GPCRs and some of the physiologic processes regulated by them.


Assuntos
Receptores de Detecção de Cálcio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Aminoácidos , Animais , Humanos , Insulina/biossíntese , Insulina/metabolismo , Secreção de Insulina , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores Acoplados a Proteínas G/genética , Serina-Treonina Quinases TOR/metabolismo , Paladar/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-21482742

RESUMO

Vesicular transport of protein and lipid cargo from the endoplasmic reticulum (ER) to cis-Golgi compartments depends on coat protein complexes, Rab GTPases, tethering factors, and membrane fusion catalysts. ER-derived vesicles deliver cargo to an ER-Golgi intermediate compartment (ERGIC) that then fuses with and/or matures into cis-Golgi compartments. The forward transport pathway to cis-Golgi compartments is balanced by a retrograde directed pathway that recycles transport machinery back to the ER. How trafficking through the ERGIC and cis-Golgi is coordinated to maintain organelle structure and function is poorly understood and highlights central questions regarding trafficking routes and organization of the early secretory pathway.


Assuntos
Complexo de Golgi/fisiologia , Via Secretória , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/fisiologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Fusão de Membrana , Proteínas de Fusão de Membrana/fisiologia , Modelos Biológicos , Estrutura Terciária de Proteína , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/fisiologia
6.
Mol Biol Cell ; 22(2): 216-29, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21119004

RESUMO

The role of specific membrane lipids in transport between endoplasmic reticulum (ER) and Golgi compartments is poorly understood. Using cell-free assays that measure stages in ER-to-Golgi transport, we screened a variety of enzyme inhibitors, lipid-modifying enzymes, and lipid ligands to investigate requirements in yeast. The pleckstrin homology (PH) domain of human Fapp1, which binds phosphatidylinositol-4-phosphate (PI(4)P) specifically, was a strong and specific inhibitor of anterograde transport. Analysis of wild type and mutant PH domain proteins in addition to recombinant versions of the Sac1p phosphoinositide-phosphatase indicated that PI(4)P was required on Golgi membranes for fusion with coat protein complex II (COPII) vesicles. PI(4)P inhibition did not prevent vesicle tethering but significantly reduced formation of soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes between vesicle and Golgi SNARE proteins. Moreover, semi-intact cell membranes containing elevated levels of the ER-Golgi SNARE proteins and Sly1p were less sensitive to PI(4)P inhibitors. Finally, in vivo analyses of a pik1 mutant strain showed that inhibition of PI(4)P synthesis blocked anterograde transport from the ER to early Golgi compartments. Together, the data presented here indicate that PI(4)P is required for the SNARE-dependent fusion stage of COPII vesicles with the Golgi complex.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo de Golgi/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas SNARE/biossíntese , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Fusão de Membrana , Proteínas de Membrana/metabolismo , Mutação , Fosfatos de Fosfatidilinositol/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Transporte Proteico , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
J Cell Sci ; 122(Pt 10): 1540-50, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19383723

RESUMO

Yip1p belongs to a conserved family of membrane-spanning proteins that are involved in intracellular trafficking. Studies have shown that Yip1p forms a heteromeric integral membrane complex, is required for biogenesis of ER-derived COPII vesicles, and can interact with Rab GTPases. However, the role of the Yip1 complex in vesicle budding is not well understood. To gain further insight, we isolated multicopy suppressors of the thermosensitive yip1-2 allele. This screen identified GOT1, FYV8 and TSC3 as novel high-copy suppressors. The strongest suppressor, GOT1, also displayed moderate suppressor activity toward temperature-sensitive mutations in the SEC23 and SEC31 genes, which encode subunits of the COPII coat. Further characterization of Got1p revealed that this protein was efficiently packaged into COPII vesicles and cycled rapidly between the ER and Golgi compartments. Based on the findings we propose that Got1p has an unexpected role in vesicle formation from the ER by influencing membrane properties.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Genes Supressores , Saccharomycetales/metabolismo , Temperatura , Proteínas de Transporte Vesicular/metabolismo , Alelos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Complexo de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Peso Molecular , Complexos Multiproteicos/metabolismo , Mutação , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...