Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Matrix Biol Plus ; 21: 100141, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38292008

RESUMO

Cardiovascular disease is the leading cause of death, with atherosclerosis the major underlying cause. While often asymptomatic for decades, atherosclerotic plaque destabilization and rupture can arise suddenly and cause acute arterial occlusion or peripheral embolization resulting in myocardial infarction, stroke and lower limb ischaemia. As extracellular matrix (ECM) remodelling is associated with plaque instability, we hypothesized that the ECM composition would differ between plaques. We analyzed atherosclerotic plaques obtained from 21 patients who underwent carotid surgery following recent symptomatic carotid artery stenosis. Plaques were solubilized using a new efficient, single-step approach. Solubilized proteins were digested to peptides, and analyzed by liquid chromatography-mass spectrometry using data-independent acquisition. Identification and quantification of 4498 plaque proteins was achieved, including 354 ECM proteins, with unprecedented coverage and high reproducibility. Multidimensional scaling analysis and hierarchical clustering indicate two distinct clusters, which correlate with macroscopic plaque morphology (soft/unstable versus hard/stable), ultrasound classification (echolucent versus echogenic) and the presence of hemorrhage/ulceration. We identified 714 proteins with differential abundances between these groups. Soft/unstable plaques were enriched in proteins involved in inflammation, ECM remodelling, and protein degradation (e.g. matrix metalloproteinases, cathepsins). In contrast, hard/stable plaques contained higher levels of ECM structural proteins (e.g. collagens, versican, nidogens, biglycan, lumican, proteoglycan 4, mineralization proteins). These data indicate that a single-step proteomics method can provide unique mechanistic insights into ECM remodelling and inflammatory mechanisms within plaques that correlate with clinical parameters, and help rationalize plaque destabilization. These data also provide an approach towards identifying biomarkers for individualized risk profiling of atherosclerosis.

2.
Redox Biol ; 64: 102794, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37402332

RESUMO

Continued oxidant production during chronic inflammation generates host tissue damage, with this being associated with pathologies including atherosclerosis. Atherosclerotic plaques contain modified proteins that may contribute to disease development, including plaque rupture, the major cause of heart attacks and strokes. Versican, a large extracellular matrix (ECM) chondroitin-sulfate proteoglycan, accumulates during atherogenesis, where it interacts with other ECM proteins, receptors and hyaluronan, and promotes inflammation. As activated leukocytes produce oxidants including peroxynitrite/peroxynitrous acid (ONOO-/ONOOH) at sites of inflammation, we hypothesized that versican is an oxidant target, with this resulting in structural and functional changes that may exacerbate plaque development. The recombinant human V3 isoform of versican becomes aggregated on exposure to ONOO-/ONOOH. Both reagent ONOO-/ONOOH and SIN-1 (a thermal source of ONOO-/ONOOH) modified Tyr, Trp and Met residues. ONOO-/ONOOH mainly favors nitration of Tyr, whereas SIN-1 mostly induced hydroxylation of Tyr, and oxidation of Trp and Met. Peptide mass mapping indicated 26 sites with modifications (15 Tyr, 5 Trp, 6 Met), with the extent of modification quantified at 16. Multiple modifications, including the most extensively nitrated residue (Tyr161), are within the hyaluronan-binding region, and associated with decreased hyaluronan binding. ONOO-/ONOOH modification also resulted in decreased cell adhesion and increased proliferation of human coronary artery smooth muscle cells. Evidence is also presented for colocalization of versican and 3-nitrotyrosine epitopes in advanced (type II-III) human atherosclerotic plaques. In conclusion, versican is readily modified by ONOO-/ONOOH, resulting in chemical and structural modifications that affect protein function, including hyaluronan binding and cell interactions.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Oxidantes/metabolismo , Ácido Peroxinitroso/metabolismo , Versicanas/genética , Versicanas/metabolismo , Ácido Hialurônico/metabolismo , Placa Aterosclerótica/metabolismo , Matriz Extracelular/metabolismo , Aterosclerose/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inflamação/metabolismo
3.
Redox Biol ; 59: 102560, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36493513

RESUMO

α,ß-Unsaturated carbonyls are a common motif in environmental toxins (e.g. acrolein) as well as therapeutic drugs, including dimethylfumarate (DMFU) and monomethylfumarate (MMFU), which are used to treat multiple sclerosis and psoriasis. These compounds form adducts with protein Cys residues as well as other nucleophiles. The specific targets ('adductome') that give rise to their therapeutic or toxic activities are poorly understood. This is due, at least in part, to the absence of antigens or chromophores/fluorophores in these compounds. We have recently reported click-chemistry probes of DMFU and MMFU (Redox Biol., 2022, 52, 102299) that allow adducted proteins to be visualized and enriched for further characterization. In the current study, we hypothesized that adducted proteins could be 'clicked' to agarose beads and thereby isolated for LC-MS analysis of DMFU/MMFU targets in primary human coronary artery smooth muscle cells. We show that the probes react with thiols with similar rate constants to the parent drugs, and give rise to comparable patterns of gene induction, confirming similar biological actions. LC-MS proteomic analysis identified ∼2970 cellular targets of DMFU, ∼1440 for MMFU, and ∼140 for the control (succinate-probe) treated samples. The most extensively modified proteins were galectin-1, annexin-A2, voltage dependent anion channel-2 and vimentin. Other previously postulated DMFU targets, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cofilin, p65 (RELA) and Keap1 were also identified as adducted species, though at lower levels with the exception of GAPDH. These data demonstrate the utility of the click-chemistry approach to the identification of cellular protein targets of both exogenous and endogenous compounds.


Assuntos
Fumarato de Dimetilo , Galectina 1 , Humanos , Fumarato de Dimetilo/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch , Proteômica , Fator 2 Relacionado a NF-E2
4.
Free Radic Biol Med ; 186: 43-52, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35526806

RESUMO

Leukocytes produce oxidants at inflammatory sites, including within the artery wall during the development of atherosclerosis. Developing lesions contain high numbers of activated leukocytes that generate reactive nitrogen species, including peroxynitrite/peroxynitrous acid (ONOO-/ONOOH), as evidenced by the presence of oxidized/nitrated molecules including extracellular matrix (ECM) proteins. ECM materials are critical for arterial wall integrity, function, and determine cell phenotype, with smooth muscle cells undergoing a phenotypic switch from quiescent/contractile to proliferative/synthetic during disease development. We hypothesized that ECM modification by ONOO-/ONOOH might drive this switch, and thereby potentially contribute to atherogenesis. ECM generated by primary human coronary artery smooth muscle cells (HCASMCs) was treated with increasing ONOO-/ONOOH concentrations (1-1000 µM). This generated significant damage on laminin, fibronectin and versican, and lower levels on collagens and glycosaminoglycans, together with the increasing concentrations of the damage biomarker 3-nitrotyrosine. Adhesion of naïve HCASMC to ECM modified by 1 µM ONOO-/ONOOH was enhanced, but significantly diminished by higher ONOO-/ONOOH treatment. Cell proliferation and metabolic activity were significantly enhanced by 100 µM ONOO-/ONOOH pre-treatment. These changes were accompanied by increased expression of genes involved in mitosis (PCNA, CCNA1, CCNB1), ECM (LAMA4, LAMB1, VCAN, FN1) and inflammation (IL-1B, IL-6, VCAM-1), and corresponding protein secretion (except VCAM-1) into the medium. These changes induced by modified ECM are consistent with HCASMC switching to a synthetic/proliferative/pro-inflammatory phenotype, together with ECM remodelling. These changes model those in atherosclerosis, suggesting a link between oxidant-modified ECM and disease progression, and highlight the potential of targeting oxidant generation as a therapeutic strategy.


Assuntos
Aterosclerose , Ácido Peroxinitroso , Aterosclerose/metabolismo , Vasos Coronários/metabolismo , Matriz Extracelular/metabolismo , Humanos , Miócitos de Músculo Liso/metabolismo , Oxidantes/metabolismo , Oxirredução , Ácido Peroxinitroso/metabolismo , Fenótipo , Molécula 1 de Adesão de Célula Vascular/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 42(7): 857-864, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35443792

RESUMO

BACKGROUND: Materials extracted from atherosclerotic arteries can disclose data about the molecular pathology of cardiovascular disease, but obtaining such samples is complex and requires invasive surgery. To overcome this barrier, this study investigated whether angioplasty balloons inflated during standard percutaneous coronary interventions retain proteins from treated (dilated) atherosclerotic lesions and whether proteomic analysis of this material could provide data on lesion protein profiles and distinguish between patients with stable and unstable coronary artery disease. METHODS: Patients with ST-segment-elevation myocardial infarction and stable angina pectoris were subjected to routine percutaneous coronary interventions. All angioplasty balloons inflated in a coronary artery were collected. Proteins retained on the balloons were extracted and analyzed using shotgun proteomic analysis. RESULTS: Proteomics identified and quantified 1365 unique proteins captured on percutaneous coronary intervention balloons. Control balloons inflated in the ascending aorta showed minimal nonspecific protein binding, indicating specificity to the luminal region of atherosclerotic lesions of the diseased artery wall. Clustering and principal component analyses showed that ST-segment-elevation myocardial infarction and stable angina pectoris subjects could be separated by variations in protein content and abundance. We identified 206 proteins as differentially abundant between ST-segment-elevation myocardial infarction and stable angina pectoris subjects. Pathway analysis indicated several enriched processes in the ST-segment-elevation myocardial infarction group involved in neutrophil-mediated immunity and platelet activation. CONCLUSIONS: Disease-related proteins from coronary artery lesions adhere to angioplasty balloons and constitute a source of material for proteomic analysis. This approach can identify proteins and processes occurring in unstable coronary atherosclerotic lesions and suggest novel therapeutic approaches.


Assuntos
Angina Estável , Angioplastia com Balão , Aterosclerose , Infarto do Miocárdio , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Angina Estável/terapia , Aterosclerose/terapia , Humanos , Infarto do Miocárdio/cirurgia , Intervenção Coronária Percutânea/efeitos adversos , Proteômica , Resultado do Tratamento
6.
Redox Biol ; 24: 101226, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31154162

RESUMO

Laminin is a major protein of the basement membrane (BM), a specialized extracellular matrix (ECM) of the artery wall. The potent oxidizing and nitrating agent peroxynitrous acid (ONOOH) is formed at sites of inflammation, and data implicate ONOOH in ECM damage and cardiovascular disease. Co-localization of 3-nitrotyrosine, a product of ONOOH-mediated tyrosine (Tyr) modification, and laminin has been reported in human atherosclerotic lesions. The sites and consequences of 3-nitrotyrosine (and related nitrated tryptophan) formation on laminin, it's self-assembly and cell interactions are poorly understood. In this study murine laminin-111 was exposed to ONOOH (1-500-fold molar excess). Nitration sites were mapped and quantified using LC-MS/MS. Mono-nitration was detected at 148 sites (126 Tyr, 22 Trp), and di-nitration at 14 sites. Label-free quantification showed enhanced nitration with increasing oxidant doses. Tyr nitration was ∼10-fold greater than at Trp. CO2 modulated damage in a site-specific manner, with most sites less extensively nitrated. 119 mono-nitration sites were identified with CO2 present, and no unique sites were detected. 23 di-nitration sites were detected, with 15 unique to the presence of CO2. Extensive modification was detected at sites involved in cell adhesion, protein-protein interactions and self-polymerization. Tyr-145 on the γ1 chain was extensively nitrated, and endothelial cells exhibited decreased adhesion to a nitrated peptide modelling this site. Modification of residues involved in self-polymerization interfered with the formation of ordered polymers as detected by scanning electron microscopy. These laminin modifications may contribute to endothelial cell dysfunction and modulate ECM structure and assembly, and thereby contribute to atherogenesis.


Assuntos
Laminina/química , Laminina/metabolismo , Oxirredução , Processamento de Proteína Pós-Traducional , Dióxido de Carbono/química , Cromatografia Líquida , Biologia Computacional/métodos , Matriz Extracelular/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Nitratos/química , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
7.
Free Radic Biol Med ; 137: 169-180, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31026584

RESUMO

Quinones are a common motif in many biological compounds, and have been linked to tissue damage as they can undergo redox cycling to generate radicals, and/or act as Michael acceptors with nucleophiles, such as protein Cys residues, with consequent adduct formation. The kinetics and consequences of these Michael reactions are poorly characterized. In this study we hypothesized that adduction of protein Cys residues with quinones would be rapid, structure-dependent, quantitatively-significant, and result in altered protein structure and function. Multiple quinones were incubated with glyceraldehyde-3-phosphate dehydrogenase (GAPDH), creatine kinase (CK), papain, bovine (BSA) and human (HSA) serum albumins, with the kinetics of adduction and effects on protein structure and activity determined. Adduction rate constants at Cys residues, which were dependent on the quinone and protein structure, and thiol pKa, are in the range 102-105 M-1 s-1. p-Benzoquinone (BQ) induced dimerization of GAPDH and CK (but not BSA, HSA, or papain) in a dose- and time-dependent manner. Incubation of purified proteins, or cell lysates, with quinones resulted in a rapid loss of GAPDH and CK activity; this loss correlated well with the rate constant for Cys adduction. Glutathione (GSH) reacts competitively with quinones, and could reverse the loss of activity and dimerization of GAPDH and CK. Mass spectrometry peptide mass mapping provided evidence for BQ adduction to GAPDH to specific Cys residues (Cys149, Cys244), whereas all Cys residues in CK were modified. These data suggested that quinones can induce biological effects by rapid and selective formation of adducts with Cys residues in proteins.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Proteínas/química , Quinonas/química , Animais , Bovinos , Cisteína/química , Cisteína/metabolismo , Dimerização , Humanos , Cinética , Espectrometria de Massas , Oxirredução , Proteínas/metabolismo , Quinonas/toxicidade
8.
Free Radic Biol Med ; 124: 176-188, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29885785

RESUMO

The present work examined the role of Tyr and Trp in oxidative modifications of caseins, the most abundant milk proteins, induced by peroxyl radicals (ROO•). We hypothesized that the selectivity of ROO• and the high flexibility of caseins (implying a high exposure of Tyr and Trp residues) would favor radical-radical reactions, and di-tyrosine (di-Tyr) and di-tryptophan (di-Trp) formation. Solutions of α- and ß-caseins were exposed to ROO• from thermolysis and photolysis of AAPH (2,2'-azobis(2-methylpropionamidine)dihydrochloride). Oxidative modifications were examined using electrophoresis, western blotting, fluorescence, and chromatographic methodologies with diode array, fluorescence and mass detection. Exposure of caseins to AAPH at 37 °C gave fragmentation, cross-linking and protein aggregation. Amino acid analysis showed consumption of Trp, Tyr, Met, His and Lys residues. Quantification of Trp and Tyr products, showed low levels of di-Tyr and di-Trp, together with an accumulation of carbonyls indicating that casein aggregation is, at least partly, associated with secondary reactions between carbonyls and Lys and His residues. AAPH photolysis, which generates a high flux of free radicals increased the extent of formation of di-Tyr in both model peptides and α- and ß- caseins; di-Trp was only detected in peptides and α-casein. Thus, in spite of the high flexibility of caseins, which would be expected to favor radical-radical reactions, the low flux of ROO• generated during AAPH thermolysis disfavours the formation of dimeric radical-radical cross-links such as di-Tyr and di-Trp, instead favoring other O2-dependent crosslinking pathways such as those involving secondary reactions of initial carbonyl products.


Assuntos
Amidinas/química , Caseínas/química , Fragmentos de Peptídeos/química , Peróxidos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Triptofano/química , Tirosina/química , Animais , Caseínas/classificação , Bovinos , Cinética , Oxidantes/química , Oxirredução , Peróxidos/química
9.
Free Radic Biol Med ; 112: 60-68, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28733212

RESUMO

FtsZ (filamenting temperature-sensitive mutant Z) is a key protein in bacteria cell division. The wild-type Escherichia coli FtsZ sequence (FtsZwt) contains three tyrosine (Tyr, Y) and sixteen methionine (Met, M) residues. The Tyr at position 222 is a key residue for FtsZ polymerization. Mutation of this residue to tryptophan (Trp, W; mutant Y222W) inhibits GTPase activity resulting in an extended time in the polymerized state compared to FtsZwt. Protein oxidation has been highlighted as a determinant process for bacteria resistance and consequently oxidation of FtsZwt and the Y222W mutant, by peroxyl radicals (ROO•) generated from AAPH (2,2'-azobis(2-methylpropionamidine) dihydrochloride) was studied. The non-oxidized proteins showed differences in their polymerization behavior, with this favored by the presence of Trp at position 222. AAPH-treatment of the proteins inhibited polymerization. Protein integrity studies using SDS-PAGE revealed the presence of both monomers and oligomers (dimers, trimers and high mass material) on oxidation. Western blotting indicated the presence of significant levels of protein carbonyls. Amino acid analysis showed that Tyr, Trp (in the Y222W mutant), and Met were consumed by ROO•. Quantification of the number of moles of amino acid consumed per mole of ROO• shows that most of the initial oxidant can be accounted for at low radical fluxes, with Met being a major target. Western blotting provided evidence for di-tyrosine cross-links in the dimeric and trimeric proteins, confirming that oxidation of Tyr residues, at positions 339 and/or 371, are critical to ROO•-mediated crosslinking of both the FtsZwt and Y222W mutant protein. These findings are in agreement with di-tyrosine, N-formyl kynurenine, and kynurenine quantification assessed by UPLC, and with LC-MS data obtained for AAPH-treated protein samples.


Assuntos
Proteínas de Bactérias/química , Proteínas do Citoesqueleto/química , Escherichia coli/metabolismo , Peróxidos/química , Triptofano/química , Tirosina/química , Amidinas/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reagentes de Ligações Cruzadas/química , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/genética , Expressão Gênica , Mutação , Oxidantes/química , Oxirredução , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Triptofano/metabolismo , Tirosina/metabolismo
10.
Am J Physiol Heart Circ Physiol ; 306(8): H1204-12, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24561865

RESUMO

Brugada syndrome (BrS) is a rare inherited disease that can give rise to ventricular arrhythmia and ultimately sudden cardiac death. Numerous loss-of-function mutations in the cardiac sodium channel Nav1.5 have been associated with BrS. However, few mutations in the auxiliary Navß1-4 subunits have been linked to this disease. Here we investigated differences in expression and function between Navß1 and Navß1b and whether the H162P/Navß1b mutation found in a BrS patient is likely to be the underlying cause of disease. The impact of Navß subunits was investigated by patch-clamp electrophysiology, and the obtained in vitro values were used for subsequent in silico modeling. We found that Navß1b transcripts were expressed at higher levels than Navß1 transcripts in the human heart. Navß1 and Navß1b coexpressed with Nav1.5 induced a negative shift on steady state of activation and inactivation compared with Nav1.5 alone. Furthermore, Navß1b was found to increase the current level when coexpressed with Nav1.5, Navß1b/H162P mutated subunit peak current density was reduced by 48% (-645 ± 151 vs. -334 ± 71 pA/pF), V1/2 steady-state inactivation shifted by -6.7 mV (-70.3 ± 1.5 vs. -77.0 ± 2.8 mV), and time-dependent recovery from inactivation slowed by >50% compared with coexpression with Navß1b wild type. Computer simulations revealed that these electrophysiological changes resulted in a reduction in both action potential amplitude and maximum upstroke velocity. The experimental data thereby indicate that Navß1b/H162P results in reduced sodium channel activity functionally affecting the ventricular action potential. This result is an important replication to support the notion that BrS can be linked to the function of Navß1b and is associated with loss-of-function of the cardiac sodium channel.


Assuntos
Síndrome de Brugada/genética , Ventrículos do Coração/química , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/genética , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/metabolismo , Potenciais de Ação , Animais , Células CHO , Cricetulus , Eletrofisiologia , Predisposição Genética para Doença , Ventrículos do Coração/fisiopatologia , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp , Isoformas de Proteínas , RNA Mensageiro/análise , Canais de Sódio/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...