Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38833404

RESUMO

Wearable EEG enables us to capture large amounts of high-quality sleep data for diagnostic purposes. To make full use of this capacity we need high-performance automatic sleep scoring models. To this end, it has been noted that domain mismatch between recording equipment can be considerable, e.g. PSG to wearable EEG, but a previously observed benefit from personalizing models to individual subjects further indicates a personal domain in sleep EEG. In this work, we have investigated the extent of such a personal domain in wearable EEG, and review supervised and unsupervised approaches to personalization as found in the literature. We investigated the personalization effect of the unsupervised Adversarial Domain Adaptation and implemented an unsupervised method based on statistics alignment. No beneficial personalization effect was observed using these unsupervised methods. We find that supervised personalization leads to a substantial performance improvement on the target subject ranging from 15% Cohen's Kappa for subjects with poor performance ( ) to roughly 2% on subjects with high performance ( ). This improvement was present for models trained on both small and large data sets, indicating that even high-performance models benefit from supervised personalization. We found that this personalization can be beneficially regularized using Kullback-Leibler regularization, leading to lower variance with negligible cost to improvement. Based on the experiments, we recommend model personalization using Kullback-Leibler regularization.

2.
IEEE J Biomed Health Inform ; 27(10): 4748-4757, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37552591

RESUMO

Human sleep is cyclical with a period of approximately 90 minutes, implying long temporal dependency in the sleep data. Yet, exploring this long-term dependency when developing sleep staging models has remained untouched. In this work, we show that while encoding the logic of a whole sleep cycle is crucial to improve sleep staging performance, the sequential modelling approach in existing state-of-the-art deep learning models are inefficient for that purpose. We thus introduce a method for efficient long sequence modelling and propose a new deep learning model, L-SeqSleepNet, which takes into account whole-cycle sleep information for sleep staging. Evaluating L-SeqSleepNet on four distinct databases of various sizes, we demonstrate state-of-the-art performance obtained by the model over three different EEG setups, including scalp EEG in conventional Polysomnography (PSG), in-ear EEG, and around-the-ear EEG (cEEGrid), even with a single EEG channel input. Our analyses also show that L-SeqSleepNet is able to alleviate the predominance of N2 sleep (the major class in terms of classification) to bring down errors in other sleep stages. Moreover the network becomes much more robust, meaning that for all subjects where the baseline method had exceptionally poor performance, their performance are improved significantly. Finally, the computation time only grows at a sub-linear rate when the sequence length increases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...