Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab ; 114(2): 138-45, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25541102

RESUMO

Mucopolysaccharidosis type I (MPS I) is due to deficient alpha-L-iduronidase (IDUA) which leads to storage of undegraded glycosaminoglycans (GAG). The severe form of the disease is characterized by mental retardation of unknown etiology. Trying to unveil the mechanisms that lead to cognitive impairment in MPS I, we studied alterations in the proteome from MPS I mouse hippocampus. Eight-month old mice presented increased LAMP-1 expression, GAG storage in neurons and glial cells, and impaired aversive and non-aversive memory. Shotgun proteomics was performed and 297 proteins were identified. Of those, 32 were differentially expressed. We found elevation in proteins such as cathepsins B and D; however their increase did not lead to cell death in MPS I brains. Glial fibrillary acid protein (GFAP) was markedly elevated, and immunohistochemistry confirmed a neuroinflammatory process that could be responsible for neuronal dysfunction. We didn't observe any differences in ubiquitin expression, as well as in other proteins related to protein folding, suggesting that the ubiquitin system is working properly. Finally, we observed alterations in several proteins involved in synaptic plasticity, including overexpression of post synaptic density-95 (PSD95) and reduction of microtubule-associated proteins 1A and 1B. These results together suggest that the cognitive impairment in MPS I mice is not due to massive cell death, but rather to neuronal dysfunction caused by multiple processes, including neuroinflammation and alterations in synaptic plasticity.


Assuntos
Transtornos Cognitivos/etiologia , Cognição , Hipocampo/metabolismo , Mucopolissacaridose I/complicações , Mucopolissacaridose I/metabolismo , Proteoma/análise , Proteômica , Animais , Encéfalo/fisiopatologia , Catepsina B/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacologia , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Glicosaminoglicanos/metabolismo , Hipocampo/fisiopatologia , Iduronidase/deficiência , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Mucopolissacaridose I/fisiopatologia , Neuroglia/metabolismo , Neurônios/metabolismo
2.
Arch Biochem Biophys ; 538(2): 80-94, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23988349

RESUMO

Tuberculosis (TB) is a major global health threat. There is a need for the development of more efficient drugs for the sterilization of the disease's causative agent, Mycobacterium tuberculosis (MTB). A more comprehensive understanding of the bacilli's nucleotide metabolic pathways could aid in the development of new anti-mycobacterial drugs. Here we describe expression and purification of recombinant iunH-encoded nucleoside hydrolase from MTB (MtIAGU-NH). Glutaraldehyde cross-linking results indicate that MtIAGU-NH predominates as a monomer, presenting varied oligomeric states depending upon binding of ligands. Steady-state kinetics results show that MtIAGU-NH has broad substrate specificity, accepting inosine, adenosine, guanosine, and uridine as substrates. Inosine and adenosine displayed positive homotropic cooperativity kinetics, whereas guanosine and uridine displayed hyperbolic saturation curves. Measurements of kinetics of ribose binding to MtIAGU-NH by fluorescence spectroscopy suggest two pre-existing forms of enzyme prior to ligand association. The intracellular concentrations of inosine, uridine, hypoxanthine, and uracil were determined and thermodynamic parameters estimated. Thermodynamic activation parameters (Ea, ΔG(#), ΔS(#), ΔH(#)) for MtIAGU-NH-catalyzed chemical reaction are presented. Results from mass spectrometry, isothermal titration calorimetry (ITC), pH-rate profile experiment, multiple sequence alignment, and molecular docking experiments are also presented. These data should contribute to our understanding of the biological role played by MtIAGU-NH.


Assuntos
Mycobacterium tuberculosis/enzimologia , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/metabolismo , Tuberculose/microbiologia , Sequência de Aminoácidos , Cálcio/análise , Clonagem Molecular , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/isolamento & purificação , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Termodinâmica
3.
Mol Biosyst ; 8(2): 572-86, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22075667

RESUMO

Tuberculosis (TB) is a chronic infectious disease caused mainly by Mycobacterium tuberculosis. The worldwide emergence of drug-resistant strains, the increasing number of infected patients among immune compromised populations, and the large number of latent infected individuals that are reservoir to the disease have underscored the urgent need of new strategies to treat TB. The nucleotide metabolism pathways provide promising molecular targets for the development of novel drugs against active TB and may, hopefully, also be effective against latent forms of the pathogen. The orotate phosphoribosyltransferase (OPRT) enzyme of the de novo pyrimidine synthesis pathway catalyzes the reversible phosphoribosyl transfer from 5'-phospho-α-D-ribose 1'-diphosphate (PRPP) to orotic acid (OA), forming pyrophosphate and orotidine 5'-monophosphate (OMP). Here we describe cloning and characterization of pyrE-encoded protein of M. tuberculosis H37Rv strain as a homodimeric functional OPRT enzyme. The M. tuberculosis OPRT true kinetic constants for forward reaction and product inhibition results suggest a Mono-Iso Ordered Bi-Bi kinetic mechanism, which has not been previously described for this enzyme family. Absence of detection of half reaction and isothermal titration calorimetry (ITC) data support the proposed mechanism. ITC data also provided thermodynamic signatures of non-covalent interactions between substrate/product and M. tuberculosis OPRT. These data provide a solid foundation on which to base target-based rational design of anti-TB agents and should inform us how to better design inhibitors of M. tuberculosis OPRT.


Assuntos
Mycobacterium tuberculosis/enzimologia , Orotato Fosforribosiltransferase/farmacocinética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacocinética , Clonagem Molecular , Ensaios Enzimáticos , Expressão Gênica , Mycobacterium tuberculosis/metabolismo , Orotato Fosforribosiltransferase/genética , Alinhamento de Sequência
4.
Kinetoplastid Biol Dis ; 3(1): 1, 2004 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15142279

RESUMO

Trypanosoma rangeli is an important hemoflagellate parasite of several mammalian species in Central and South America, sharing geographical areas, vectors and reservoirs with T. cruzi, the causative agent of Chagas disease. Thus, the occurrence of single and/or mixed infections, including in humans, must be expected and are of great importance for specific diagnosis and epidemiology. In comparison to several Trypanosomatidae species, the T. rangeli biology and genome are little known, reinforcing the needs of a gene discovery initiative. The T. rangeli transcriptome initiative aims to promote gene discovery through the generation of expressed sequence tags (ESTs) and Orestes (ORF ESTs) from both epimastigote and trypomastigote forms of the parasite, allowing further studies of the parasite biology, taxonomy and phylogeny.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...