Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29146, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628759

RESUMO

Preventing microbiological surface contamination in public spaces is nowadays of high priority. The proliferation of a microbial infection may arise through air, water, or direct contact with infected surfaces. Chemical sanitization is one of the most effective approaches to avoid the proliferation of microorganisms. However, extended contact with chemicals for cleaning purposes such as chlorine, hydrogen peroxide or ethanol may lead to long-term diseases as well as drowsiness or respiratory issues, not to mention environmental issues associated to their use. As a potentially safer alternative, in the present work, the efficacy and endurance of the antimicrobial activity of different sol-gel coatings were studied, where one or two biocides were added to the coating matrix resulting on active groups exposed on the surface. Specifically, the coating formulations were synthesized by the sol-gel method. Using the alkoxide route with acid catalysis a hybrid silica-titania-methacrylate matrix was obtained where aromatic liquid eugenol was added with a double function: as a complexing agent for the chelation of the reaction precursor titanium isopropoxide, and as a biocide. In addition, 2-Phenylphenol, ECHA approved biocide, has also been incorporated to the coating matrix. The antibacterial effect of these coatings was confirmed on Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). Additionally, the coatings were non cyto-toxic and displayed virucidal activity. The coating chemical composition was characterized by 29Si NMR, and ATR-FTIR. Furthermore, the thickness and the mechanical properties were characterized by profilometry and nanoindentation, respectively. Finally, the durability of the coatings was studied with tribology tests. Overall, our data support the efficacy of the tested sol-gel coatings and suggest that added features may be required to improve endurance of the antimicrobial effects on operational conditions.

2.
Analyst ; 147(15): 3470-3477, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35713181

RESUMO

In this work we report the development and validation of a photoelectrochemical immunosensor on the basis of alkaline phosphatase (ALP)-linked immunoassay for the detection of human serum albumin as a model analyte. In this biosensor, oriented immobilization of capture antibodies on aminated polystyrene was achieved via physical adsorption. After the interaction with the analyte, ALP immobilised on the surface through the sandwich immunoassay catalyses the hydrolysis of sodium thiophosphate (TP) to hydrogen sulphide (H2S) which in the presence of cadmium ions yields CdS quantum dots (QDs). The electrical current is generated in the course of the photoelectrochemical process (PEC) during irradiation of the CdS QDs with a UV LED (365 nm) on home-made screen-printed carbon electrodes modified with a conductive polymer. Reaction time, steps and volumes were optimized for the miniaturization of the process in order to develop a lab-on-a-chip platform. The microfluidic system was designed with optimised parameters to fabricate the immunosensor combining the immunoassay with PEC detection. The final system presents a sensitivity comparable to that of the commercial kit thanks to the signal amplification enabled by the enzymatic growth of CdS QDs in situ. This photoelectrochemical immunosensing strategy potentially opens up a new avenue for the detection of a wide range of analytes of interest due to the universal and effective enzymatic signal amplification method. Moreover, the developed bioanalytical device allows for a great reduction of time and reagents compared to exiting commercial assays, making it suitable for point-of-care applications.


Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Pontos Quânticos , Fosfatase Alcalina , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Humanos , Imunoensaio/métodos , Dispositivos Lab-On-A-Chip , Limite de Detecção , Sulfetos
3.
Mater Sci Eng C Mater Biol Appl ; 112: 110912, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409065

RESUMO

In this work the modification of polystyrene micro-well plates and their use as bioanalytical platform is described. A wet-chemical procedure was applied for the chlorosulfonation of these polystyrene substrates (PS) resulting in well-controlled and reactive surfaces. This method enabled the production of transparent and stable substrates under ambient conditions. The chlorosulfonyl moieties at the substrate surface were converted under mild conditions into different functional groups. The modification of PS served to increase the hydrophilic properties of the surface and thus, the improvement of interaction with biocompounds. The resulting substrates were characterized by contact angle measurements, X-ray Photoelectron Spectroscopy and colorimetry. PS substrates modified with different functional groups and attachment approaches (covalent link and direct adsorption of the antibodies) were used as the platform for immunoassays and the results compared to a commercial Human Serum Albumin ELISA kit. Aminated surfaces gave better results than those with carboxyl, alkene or epoxy groups and even the commercial kit.


Assuntos
Poliestirenos/química , Ácidos Sulfônicos/química , Adsorção , Aminas/química , Ensaio de Imunoadsorção Enzimática , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia Fotoeletrônica , Albumina Sérica/análise , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...