Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Eye (Lond) ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538779

RESUMO

Programmed axon death is a druggable pathway of axon degeneration that has garnered considerable interest from pharmaceutical companies as a promising therapeutic target for various neurodegenerative disorders. In this review, we highlight mechanisms through which this pathway is activated in the retina and optic nerve, and discuss its potential significance for developing therapies for eye disorders and beyond. At the core of programmed axon death are two enzymes, NMNAT2 and SARM1, with pivotal roles in NAD metabolism. Extensive preclinical data in disease models consistently demonstrate remarkable, and in some instances, complete and enduring neuroprotection when this mechanism is targeted. Findings from animal studies are now being substantiated by genetic human data, propelling the field rapidly toward clinical translation. As we approach the clinical phase, the selection of suitable disorders for initial clinical trials targeting programmed axon death becomes crucial for their success. We delve into the multifaceted roles of programmed axon death and NAD metabolism in retinal and optic nerve disorders. We discuss the role of SARM1 beyond axon degeneration, including its potential involvement in neuronal soma death and photoreceptor degeneration. We also discuss genetic human data and environmental triggers of programmed axon death. Lastly, we touch upon potential therapeutic approaches targeting NMNATs and SARM1, as well as the nicotinamide trials for glaucoma. The extensive literature linking programmed axon death to eye disorders, along with the eye's suitability for drug delivery and visual assessments, makes retinal and optic nerve disorders strong contenders for early clinical trials targeting programmed axon death.

2.
J Cell Sci ; 136(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37642648

RESUMO

Myelinating Schwann cell (SC)-dorsal root ganglion (DRG) neuron cocultures are an important technique for understanding cell-cell signalling and interactions during peripheral nervous system (PNS) myelination, injury, and regeneration. Although methods using rat SCs and neurons or mouse DRG explants are commonplace, there are no established protocols for compartmentalised myelinating cocultures with dissociated mouse cells. There consequently is a need for a coculture protocol that allows separate genetic manipulation of mouse SCs or neurons, or use of cells from different transgenic animals to complement in vivo mouse experiments. However, inducing myelination of dissociated mouse SCs in culture is challenging. Here, we describe a new method to coculture dissociated mouse SCs and DRG neurons in microfluidic chambers and induce robust myelination. Cocultures can be axotomised to study injury and used for drug treatments, and cells can be lentivirally transduced for live imaging. We used this model to investigate axon degeneration after traumatic axotomy and find that SCs, irrespective of myelination status, are axo-protective. At later timepoints after injury, live imaging of cocultures shows that SCs break up, ingest and clear axonal debris.


Assuntos
Neurônios , Células de Schwann , Animais , Camundongos , Ratos , Técnicas de Cocultura , Axônios , Animais Geneticamente Modificados
3.
Front Cell Neurosci ; 17: 1158388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091921

RESUMO

Since SARM1 mutations have been identified in human neurological disease, SARM1 inhibition has become an attractive therapeutic strategy to preserve axons in a variety of disorders of the peripheral (PNS) and central nervous system (CNS). While SARM1 has been extensively studied in neurons, it remains unknown whether SARM1 is present and functional in myelinating glia? This is an important question to address. Firstly, to identify whether SARM1 dysfunction in other cell types in the nervous system may contribute to neuropathology in SARM1 dependent diseases? Secondly, to ascertain whether therapies altering SARM1 function may have unintended deleterious impacts on PNS or CNS myelination? Surprisingly, we find that oligodendrocytes express sarm1 mRNA in the zebrafish spinal cord and that SARM1 protein is readily detectable in rodent oligodendrocytes in vitro and in vivo. Furthermore, activation of endogenous SARM1 in cultured oligodendrocytes induces rapid cell death. In contrast, in peripheral glia, SARM1 protein is not detectable in Schwann cells and satellite glia in vivo and sarm1/Sarm1 mRNA is detected at very low levels in Schwann cells, in vivo, in zebrafish and mouse. Application of specific SARM1 activators to cultured mouse Schwann cells does not induce cell death and nicotinamide adenine dinucleotide (NAD) levels remain unaltered suggesting Schwann cells likely contain no functionally relevant levels of SARM1. Finally, we address the question of whether SARM1 is required for myelination or myelin maintenance. In the zebrafish and mouse PNS and CNS, we show that SARM1 is not required for initiation of myelination and myelin sheath maintenance is unaffected in the adult mouse nervous system. Thus, strategies to inhibit SARM1 function to treat neurological disease are unlikely to perturb myelination in humans.

4.
Neurosci Res ; 197: 18-24, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36657725

RESUMO

The past 20 years of research on axon degeneration has revealed fine details on how NAD biology controls axonal survival. Extensive data demonstrate that the NAD precursor NMN binds to and activates the pro-degenerative enzyme SARM1, so a failure to convert sufficient NMN into NAD leads to toxic NMN accumulation and axon degeneration. This involvement of NMN brings the axon degeneration field to an unexpected overlap with research into ageing and extending healthy lifespan. A decline in NAD levels throughout life, at least in some tissues, is believed to contribute to age-related functional decay and boosting NAD production with supplementation of NMN or other NAD precursors has gained attention as a potential anti-ageing therapy. Recent years have witnessed an influx of NMN-based products and related molecules on the market, sold as food supplements, with many people taking these supplements daily. While several clinical trials are ongoing to check the safety profiles and efficacy of NAD precursors, sufficient data to back their therapeutic use are still lacking. Here, we discuss NMN supplementation, SARM1 and anti-ageing strategies, with an important question in mind: considering that NMN accumulation can lead to axon degeneration, how is this compatible with its beneficial effect in ageing and are there circumstances in which NMN supplementation could become harmful?


Assuntos
Axônios , NAD , Humanos , NAD/metabolismo , Axônios/metabolismo , Envelhecimento
5.
Elife ; 112022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36476387

RESUMO

Axon degeneration contributes to the disruption of neuronal circuit function in diseased and injured nervous systems. Severed axons degenerate following the activation of an evolutionarily conserved signaling pathway, which culminates in the activation of SARM1 in mammals to execute the pathological depletion of the metabolite NAD+. SARM1 NADase activity is activated by the NAD+ precursor nicotinamide mononucleotide (NMN). In mammals, keeping NMN levels low potently preserves axons after injury. However, it remains unclear whether NMN is also a key mediator of axon degeneration and dSarm activation in flies. Here, we demonstrate that lowering NMN levels in Drosophila through the expression of a newly generated prokaryotic NMN-Deamidase (NMN-D) preserves severed axons for months and keeps them circuit-integrated for weeks. NMN-D alters the NAD+ metabolic flux by lowering NMN, while NAD+ remains unchanged in vivo. Increased NMN synthesis by the expression of mouse nicotinamide phosphoribosyltransferase (mNAMPT) leads to faster axon degeneration after injury. We also show that NMN-induced activation of dSarm mediates axon degeneration in vivo. Finally, NMN-D delays neurodegeneration caused by loss of the sole NMN-consuming and NAD+-synthesizing enzyme dNmnat. Our results reveal a critical role for NMN in neurodegeneration in the fly, which extends beyond axonal injury. The potent neuroprotection by reducing NMN levels is similar to the interference with other essential mediators of axon degeneration in Drosophila.


Assuntos
Drosophila , Mononucleotídeo de Nicotinamida , Animais , Camundongos , Drosophila/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , NAD/metabolismo , Axônios/fisiologia , Neurônios/fisiologia , Mamíferos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(35): e2208457119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994671

RESUMO

The nicotinamide adenine dinucleotide hydrolase (NADase) sterile alpha toll/interleukin receptor motif containing-1 (SARM1) acts as a central executioner of programmed axon death and is a possible therapeutic target for neurodegenerative disorders. While orthosteric inhibitors of SARM1 have been described, this multidomain enzyme is also subject to intricate forms of autoregulation, suggesting the potential for allosteric modes of inhibition. Previous studies have identified multiple cysteine residues that support SARM1 activation and catalysis, but which of these cysteines, if any, might be selectively targetable by electrophilic small molecules remains unknown. Here, we describe the chemical proteomic discovery of a series of tryptoline acrylamides that site-specifically and stereoselectively modify cysteine-311 (C311) in the noncatalytic, autoregulatory armadillo repeat (ARM) domain of SARM1. These covalent compounds inhibit the NADase activity of WT-SARM1, but not C311A or C311S SARM1 mutants, show a high degree of proteome-wide selectivity for SARM1_C311 and stereoselectively block vincristine- and vacor-induced neurite degeneration in primary rodent dorsal root ganglion neurons. Our findings describe selective, covalent inhibitors of SARM1 targeting an allosteric cysteine, pointing to a potentially attractive therapeutic strategy for axon degeneration-dependent forms of neurological disease.


Assuntos
Proteínas do Domínio Armadillo , Cisteína , Proteínas do Citoesqueleto , Proteínas do Domínio Armadillo/antagonistas & inibidores , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/genética , Axônios , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Homeostase , NAD+ Nucleosidase , Proteômica
7.
J Anat ; 241(5): 1211-1218, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35728923

RESUMO

Neurological disorders are prevalent in horses, but their study is challenging due to anatomic constraints and the large body size; very few host-specific in vitro models have been established to study these types of diseases, particularly from adult donor tissue. Here we report the generation of primary neuronal dorsal root ganglia (DRG) cultures from adult horses: the mixed, dissociated cultures, containing neurons and glial cells, remained viable for at least 90 days. Similar to DRG neurons in vivo, cultured neurons varied in size, and they developed long neurites. The mitochondrial movement was detected in cultured cells and was significantly slower in glial cells compared to DRG-derived neurons. In addition, mitochondria were more elongated in glial cells than those in neurons. Our culture model will be a useful tool to study the contribution of axonal transport defects to specific neurodegenerative diseases in horses as well as comparative studies aimed at evaluating species-specific differences in axonal transport and survival.


Assuntos
Transporte Axonal , Gânglios Espinais , Animais , Células Cultivadas , Cavalos , Neuritos/fisiologia , Neurônios
8.
iScience ; 25(2): 103812, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35198877

RESUMO

SARM1 is an NAD(P) glycohydrolase and TLR adapter with an essential, prodegenerative role in programmed axon death (Wallerian degeneration). Like other NAD(P)ases, it catalyzes multiple reactions that need to be fully investigated. Here, we compare these multiple activities for recombinant human SARM1, human CD38, and Aplysia californica ADP ribosyl cyclase. SARM1 has the highest transglycosidation (base exchange) activity at neutral pH and with some bases this dominates NAD(P) hydrolysis and cyclization. All SARM1 activities, including base exchange at neutral pH, are activated by an increased NMN:NAD ratio, at physiological levels of both metabolites. SARM1 base exchange occurs also in DRG neurons and is thus a very likely physiological source of calcium-mobilizing agent NaADP. Finally, we identify regulation by free pyridines, NADP, and nicotinic acid riboside (NaR) on SARM1, all of therapeutic interest. Understanding which specific SARM1 function(s) is responsible for axon degeneration is essential for its targeting in disease.

9.
Trends Neurosci ; 45(1): 53-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852932

RESUMO

Mitochondrial failure has long been associated with programmed axon death (Wallerian degeneration, WD), a widespread and potentially preventable mechanism of axon degeneration. While early findings in axotomised axons indicated that mitochondria are involved during the execution steps of this pathway, recent studies suggest that in addition, mitochondrial dysfunction can initiate programmed axon death without physical injury. As mitochondrial dysfunction is associated with disorders involving early axon loss, including Parkinson's disease, peripheral neuropathies, and multiple sclerosis, the findings that programmed axon death is activated by mitochondrial impairment could indicate the involvement of druggable mechanisms whose disruption may protect axons in such diseases. Here, we review the latest developments linking mitochondrial dysfunction to programmed axon death and discuss their implications for injury and disease.


Assuntos
Doenças do Sistema Nervoso Periférico , Proteínas do Domínio Armadillo/metabolismo , Axônios/patologia , Proteínas do Citoesqueleto/metabolismo , Humanos , Mitocôndrias/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Degeneração Walleriana/metabolismo , Degeneração Walleriana/patologia
10.
Elife ; 102021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34870595

RESUMO

Axon loss underlies symptom onset and progression in many neurodegenerative disorders. Axon degeneration in injury and disease is promoted by activation of the NAD-consuming enzyme SARM1. Here, we report a novel activator of SARM1, a metabolite of the pesticide and neurotoxin vacor. Removal of SARM1 completely rescues mouse neurons from vacor-induced neuron and axon death in vitro and in vivo. We present the crystal structure of the Drosophila SARM1 regulatory domain complexed with this activator, the vacor metabolite VMN, which as the most potent activator yet known is likely to support drug development for human SARM1 and NMNAT2 disorders. This study indicates the mechanism of neurotoxicity and pesticide action by vacor, raises important questions about other pyridines in wider use today, provides important new tools for drug discovery, and demonstrates that removing SARM1 can robustly block programmed axon death induced by toxicity as well as genetic mutation.


Assuntos
Proteínas do Domínio Armadillo/genética , Axônios/patologia , Proteínas do Citoesqueleto/genética , Degeneração Neural/fisiopatologia , Neurotoxinas/farmacologia , Compostos de Fenilureia/farmacologia , Animais , Proteínas do Domínio Armadillo/metabolismo , Axônios/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Feminino , Masculino , Camundongos , Degeneração Neural/induzido quimicamente , Rodenticidas/farmacologia
11.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925236

RESUMO

Neurodegenerative diseases (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease are incurable and affect millions of people worldwide. The development of treatments for this unmet clinical need is a major global research challenge. Computer-aided drug design (CADD) methods minimize the huge number of ligands that could be screened in biological assays, reducing the cost, time, and effort required to develop new drugs. In this review, we provide an introduction to CADD and examine the progress in applying CADD and other molecular docking studies to NDs. We provide an updated overview of potential therapeutic targets for various NDs and discuss some of the advantages and disadvantages of these tools.


Assuntos
Desenho de Fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Alzheimer , Esclerose Lateral Amiotrófica , Humanos , Doença de Huntington , Simulação de Acoplamento Molecular/métodos , Simulação de Acoplamento Molecular/tendências , Doença de Parkinson
13.
Nat Chem Biol ; 16(11): 1227-1236, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32747811

RESUMO

MYCBP2 is a ubiquitin (Ub) E3 ligase (E3) that is essential for neurodevelopment and regulates axon maintenance. MYCBP2 transfers Ub to nonlysine substrates via a newly discovered RING-Cys-Relay (RCR) mechanism, where Ub is relayed from an upstream cysteine to a downstream substrate esterification site. The molecular bases for E2-E3 Ub transfer and Ub relay are unknown. Whether these activities are linked to the neural phenotypes is also unclear. We describe the crystal structure of a covalently trapped E2~Ub:MYCBP2 transfer intermediate revealing key structural rearrangements upon E2-E3 Ub transfer and Ub relay. Our data suggest that transfer to the dynamic upstream cysteine, whilst mitigating lysine activity, requires a closed-like E2~Ub conjugate with tempered reactivity, and Ub relay is facilitated by a helix-coil transition. Furthermore, neurodevelopmental defects and delayed injury-induced degeneration in RCR-defective knock-in mice suggest its requirement, and that of substrate esterification activity, for normal neural development and programmed axon degeneration.


Assuntos
Axônios/metabolismo , Cisteína/metabolismo , Domínios RING Finger , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sítios de Ligação , Feminino , Técnicas de Introdução de Genes , Humanos , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL/embriologia , Camundongos Transgênicos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade , Ubiquitinação
14.
Methods Mol Biol ; 2143: 15-24, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32524469

RESUMO

The ability of peripheral nervous system neurons to extend long, axon-like neurites in vitro makes them ideally suited for studies on mechanisms of axon survival and degeneration. In this chapter, we describe how to prepare explant cultures of sympathetic neurons of the superior cervical ganglion (SCG). We also describe how to induce and assess axon degeneration with an injury or a chemical insult.


Assuntos
Axônios/fisiologia , Degeneração Neural/fisiopatologia , Técnicas de Cultura de Órgãos/métodos , Gânglio Cervical Superior/citologia , Animais , Antineoplásicos/toxicidade , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Axotomia , Dissecação/métodos , Camundongos , Microscopia de Contraste de Fase/métodos , Neurotoxinas/toxicidade , Técnicas de Cultura de Órgãos/instrumentação , Inibidores da Síntese de Proteínas/farmacologia , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/ultraestrutura , Degeneração Walleriana/fisiopatologia
15.
Methods Mol Biol ; 2143: 25-39, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32524470

RESUMO

Primary cultures of neurons of the peripheral nervous system have been successfully used for studying many aspects of neuronal development and survival, including investigations into the mechanisms of axon degeneration. In this chapter, we describe how to prepare and microinject dissociated cultures of sympathetic neurons of the superior cervical ganglion (SCG) specifically for use in highly controlled and targeted assays of axon survival and degeneration.


Assuntos
Axônios/efeitos dos fármacos , Microinjeções/métodos , Gânglio Cervical Superior/citologia , Animais , Afidicolina/farmacologia , Axotomia , Corantes Fluorescentes/administração & dosagem , Camundongos , Microinjeções/instrumentação , Microscopia de Fluorescência/métodos , Microscopia de Contraste de Fase/métodos , Fator de Crescimento Neural/administração & dosagem , Cultura Primária de Células , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/ultraestrutura , Soluções/administração & dosagem
16.
Front Neurol ; 11: 401, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477254

RESUMO

Traumatic brain injury is a major global cause of death and disability. Axonal injury is a major underlying mechanism of TBI and could represent a major therapeutic target. We provide evidence that targeting the axonal death pathway known as Wallerian degeneration improves outcome in a Drosophila Melanogaster model of high impact trauma. This cell-autonomous neurodegenerative pathway is initiated following axon injury, and in Drosophila, involves activity of the E3 ubiquitin ligase highwire. We demonstrate that a loss-of-function mutation in the highwire gene rescues deleterious effects of a traumatic injury, including-improved functional outcomes, lifespan, survival of dopaminergic neurons, and retention of synaptic proteins. This data suggests that highwire represents a potential therapeutic target in traumatic injury.

17.
ACS Chem Neurosci ; 11(3): 258-267, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31845794

RESUMO

Disruption of axonal transport causes a number of rare, inherited axonopathies and is heavily implicated in a wide range of more common neurodegenerative disorders, many of them age-related. Acetylation of α-tubulin is one important regulatory mechanism, influencing microtubule stability and motor protein attachment. Of several strategies so far used to enhance axonal transport, increasing microtubule acetylation through inhibition of the deacetylase enzyme histone deacetylase 6 (HDAC6) has been one of the most effective. Several inhibitors have been developed and tested in animal and cellular models, but better drug candidates are still needed. Here we report the development and characterization of two highly potent HDAC6 inhibitors, which show low toxicity, promising pharmacokinetic properties, and enhance microtubule acetylation in the nanomolar range. We demonstrate their capacity to rescue axonal transport of mitochondria in a primary neuronal culture model of the inherited axonopathy Charcot-Marie-Tooth Type 2F, caused by a dominantly acting mutation in heat shock protein beta 1.


Assuntos
Desacetilase 6 de Histona/antagonistas & inibidores , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Tubulina (Proteína)/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Doença de Charcot-Marie-Tooth/enzimologia , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Neurônios/metabolismo , Tubulina (Proteína)/metabolismo
18.
Neurobiol Dis ; 134: 104678, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31740269

RESUMO

Wallerian degeneration of physically injured axons involves a well-defined molecular pathway linking loss of axonal survival factor NMNAT2 to activation of pro-degenerative protein SARM1. Manipulating the pathway through these proteins led to the identification of non-axotomy insults causing axon degeneration by a Wallerian-like mechanism, including several involving mitochondrial impairment. Mitochondrial dysfunction is heavily implicated in Parkinson's disease, Charcot-Marie-Tooth disease, hereditary spastic paraplegia and other axonal disorders. However, whether and how mitochondrial impairment activates Wallerian degeneration has remained unclear. Here, we show that disruption of mitochondrial membrane potential leads to axonal NMNAT2 depletion in mouse sympathetic neurons, increasing the substrate-to-product ratio (NMN/NAD) of this NAD-synthesising enzyme, a metabolic fingerprint of Wallerian degeneration. The mechanism appears to involve both impaired NMNAT2 synthesis and reduced axonal transport. Expression of WLDS and Sarm1 deletion both protect axons after mitochondrial uncoupling. Blocking the pathway also confers neuroprotection and increases the lifespan of flies with Pink1 loss-of-function mutation, which causes severe mitochondrial defects. These data indicate that mitochondrial impairment replicates all the major steps of Wallerian degeneration, placing it upstream of NMNAT2 loss, with the potential to contribute to axon pathology in mitochondrial disorders.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Mitocôndrias/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Degeneração Walleriana/metabolismo , Degeneração Walleriana/patologia , Animais , Axônios/metabolismo , Axônios/patologia , Drosophila , Masculino , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL
19.
Acta Neuropathol Commun ; 7(1): 166, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661035

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition that primarily affects the motor system and shares many features with frontotemporal dementia (FTD). Evidence suggests that ALS is a 'dying-back' disease, with peripheral denervation and axonal degeneration occurring before loss of motor neuron cell bodies. Distal to a nerve injury, a similar pattern of axonal degeneration can be seen, which is mediated by an active axon destruction mechanism called Wallerian degeneration. Sterile alpha and TIR motif-containing 1 (Sarm1) is a key gene in the Wallerian pathway and its deletion provides long-term protection against both Wallerian degeneration and Wallerian-like, non-injury induced axonopathy, a retrograde degenerative process that occurs in many neurodegenerative diseases where axonal transport is impaired. Here, we explored whether Sarm1 signalling could be a therapeutic target for ALS by deleting Sarm1 from a mouse model of ALS-FTD, a TDP-43Q331K, YFP-H double transgenic mouse. Sarm1 deletion attenuated motor axon degeneration and neuromuscular junction denervation. Motor neuron cell bodies were also significantly protected. Deletion of Sarm1 also attenuated loss of layer V pyramidal neuronal dendritic spines in the primary motor cortex. Structural MRI identified the entorhinal cortex as the most significantly atrophic region, and histological studies confirmed a greater loss of neurons in the entorhinal cortex than in the motor cortex, suggesting a prominent FTD-like pattern of neurodegeneration in this transgenic mouse model. Despite the reduction in neuronal degeneration, Sarm1 deletion did not attenuate age-related behavioural deficits caused by TDP-43Q331K. However, Sarm1 deletion was associated with a significant increase in the viability of male TDP-43Q331K mice, suggesting a detrimental role of Wallerian-like pathways in the earliest stages of TDP-43Q331K-mediated neurodegeneration. Collectively, these results indicate that anti-SARM1 strategies have therapeutic potential in ALS-FTD.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Espinhas Dendríticas/patologia , Demência Frontotemporal/patologia , Córtex Motor/patologia , Neurônios Motores/patologia , Degeneração Walleriana/patologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas do Domínio Armadillo/genética , Proteínas do Citoesqueleto/genética , Espinhas Dendríticas/metabolismo , Feminino , Demência Frontotemporal/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Córtex Motor/metabolismo , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Transdução de Sinais , Degeneração Walleriana/metabolismo
20.
Behav Brain Res ; 339: 140-152, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29175372

RESUMO

NAD metabolism and the NAD biosynthetic enzymes nicotinamide nucleotide adenylyltransferases (NMNATs) are thought to play a key neuroprotective role in tauopathies, including Alzheimer's disease. Here, we investigated whether modulating the expression of the NMNAT nuclear isoform NMNAT1, which is important for neuronal maintenance, influences the development of behavioral and neuropathological abnormalities in htau mice, which express non-mutant human tau isoforms and represent a model of tauopathy relevant to Alzheimer's disease. Prior to the development of cognitive symptoms, htau mice exhibit tau hyperphosphorylation associated with a selective deficit in food burrowing, a behavior reminiscent to activities of daily living which are impaired early in Alzheimer's disease. We crossed htau mice with Nmnat1 transgenic and knockout mice and tested the resulting offspring until the age of 6 months. We show that overexpression of NMNAT1 ameliorates the early deficit in food burrowing characteristic of htau mice. At 6 months of age, htau mice did not show neurodegenerative changes in both the cortex and hippocampus, and these were not induced by downregulating NMNAT1 levels. Modulating NMNAT1 levels produced a corresponding effect on NMNAT enzymatic activity but did not alter NAD levels in htau mice. Although changes in local NAD levels and subsequent modulation of NAD-dependent enzymes cannot be ruled out, this suggests that the effects seen on behavior may be due to changes in tau phosphorylation. Our results suggest that increasing NMNAT1 levels can slow the progression of symptoms and neuropathological features of tauopathy, but the underlying mechanisms remain to be established.


Assuntos
Comportamento Animal/fisiologia , Memória/fisiologia , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Tauopatias/patologia , Atividades Cotidianas , Animais , Modelos Animais de Doenças , Camundongos Knockout , Neurônios/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...