Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav ; 3(2): 104-13, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23533098

RESUMO

γ-Aminobutyric acid type A (GABAA) receptor plasticity participates in mediating adaptation to environmental change. Previous studies in rats demonstrated that extrasynaptic GABAA receptor subunits and receptors in the pons, a brainstem region involved in respiratory control, are upregulated by exposure to sustained hypobaric hypoxia. In these animals, expression of the mRNA encoding the extrasynaptic α4 subunit rose after 3 days in sustained hypoxia, while those encoding the α6 and δ subunits increased dramatically by 2 weeks. However, the participation of extrasynaptic subunits in maintaining respiration in normoxic conditions remains unknown. To examine the importance of α4 in a normal environment, respiratory function, motor and anxiety-like behaviors, and expression of other GABAA receptor subunit mRNAs were compared in wild-type (WT) and α4 subunit-deficient mice. Loss of the α4 subunit did not impact frequency, but did lead to reduced ventilatory pattern variability. In addition, mice lacking the subunit exhibited increased anxiety-like behavior. Finally, α4 subunit loss resulted in reduced expression of other extrasynaptic (α6 and δ) subunit mRNAs in the pons without altering those encoding the most prominent synaptic subunits. These findings on subunit-deficient mice maintained in normoxia, in conjunction with earlier findings on animals maintained in chronic hypoxia, suggest that the expression and regulation of extrasynaptic GABAA receptor subunits in the pons is interdependent and that their levels influence respiratory control as well as adaptation to stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...