Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2843, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310201

RESUMO

One of the challenges of technology-assisted motor learning is how to adapt practice to facilitate learning. Random practice has been shown to promote long-term learning. However, it does not adapt to the learner's specific learning requirements. Previous attempts to adapt learning considered the skill level of learners from past training sessions. This study investigates the effects of personalizing practice in real time, through a curriculum learning approach, where a curriculum of tasks is built by considering consecutive performance differences for each task. 12 participants were allocated to each of three training conditions in an experiment which required performing a steering task to drive a cursor in an arc channel. The curriculum learning approach was compared to two other conditions: random practice and another adaptive practice, which does not consider the learning evolution. The curriculum learning practice outperformed the random practice in effectively increasing movement smoothness at post-test and outperformed both the random practice and the adaptive practice on transfer tests. The adaptation of practice through the curriculum learning approach also made learners' skills more uniform. Based on these findings, we anticipate that future research will explore the use of curriculum learning in interactive training tools to support motor skill learning, such as rehabilitation.

2.
PLoS One ; 18(2): e0272509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36735670

RESUMO

Analysing movement learning can rely on human evaluation, e.g. annotating video recordings, or on computing means in applying metrics on behavioural data. However, it remains challenging to relate human perception of movement similarity to computational measures that aim at modelling such similarity. In this paper, we propose a metric learning method bridging the gap between human ratings of movement similarity in a motor learning task and computational metric evaluation on the same task. It applies metric learning on a Dynamic Time Warping algorithm to derive an optimal set of movement features that best explain human ratings. We evaluated this method on an existing movement dataset, which comprises videos of participants practising a complex gesture sequence toward a target template, as well as the collected data that describes the movements. We show that it is possible to establish a linear relationship between human ratings and our learned computational metric. This learned metric can be used to describe the most salient temporal moments implicitly used by annotators, as well as movement parameters that correlate with motor improvements in the dataset. We conclude with possibilities to generalise this method for designing computational tools dedicated to movement annotation and evaluation of skill learning.


Assuntos
Aprendizagem , Movimento , Humanos , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...