Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Elife ; 132024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573742

RESUMO

We have developed a deep sequencing-based approach, Rec-Seq, that allows simultaneous monitoring of ribosomal 48S preinitiation complex (PIC) formation on every mRNA in the translatome in an in vitro reconstituted system. Rec-Seq isolates key early steps in translation initiation in the absence of all other cellular components and processes. Using this approach, we show that the DEAD-box ATPase Ded1 promotes 48S PIC formation on the start codons of >1000 native mRNAs, most of which have long, structured 5'-untranslated regions (5'UTRs). Remarkably, initiation measured in Rec-Seq was enhanced by Ded1 for most mRNAs previously shown to be highly Ded1-dependent by ribosome profiling of ded1 mutants in vivo, demonstrating that the core translation functions of the factor are recapitulated in the purified system. Our data do not support a model in which Ded1acts by reducing initiation at alternative start codons in 5'UTRs and instead indicate it functions by directly promoting mRNA recruitment to the 43S PIC and scanning to locate the main start codon. We also provide evidence that eIF4A, another essential DEAD-box initiation factor, is required for efficient PIC assembly on almost all mRNAs, regardless of their structural complexity, in contrast to the preferential stimulation by Ded1 of initiation on mRNAs with long, structured 5'UTRs.


Assuntos
RNA Helicases DEAD-box , Transcriptoma , Regiões 5' não Traduzidas , Códon de Iniciação , RNA Mensageiro/genética
3.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37986768

RESUMO

We have developed a deep sequencing-based approach, Rec-Seq, that allows simultaneous monitoring of ribosomal 48S pre-initiation complex (PIC) formation on every mRNA in the translatome in an in vitro reconstituted system. Rec-Seq isolates key early steps in translation initiation in the absence of all other cellular components and processes. Using this approach we show that the DEAD-box ATPase Ded1 promotes 48S PIC formation on the start codons of >1000 native mRNAs, most of which have long, structured 5'-untranslated regions (5'UTRs). Remarkably, initiation measured in Rec-Seq was enhanced by Ded1 for most mRNAs previously shown to be highly Ded1-dependent by ribosome profiling of ded1 mutants in vivo, demonstrating that the core translation functions of the factor are recapitulated in the purified system. Our data do not support a model in which Ded1acts by reducing initiation at alternative start codons in 5'UTRs and instead indicate it functions by directly promoting mRNA recruitment to the 43S PIC and scanning to locate the main start codon. We also provide evidence that eIF4A, another essential DEAD-box initiation factor, is required for efficient PIC assembly on almost all mRNAs, regardless of their structural complexity, in contrast to the preferential stimulation by Ded1 of initiation on mRNAs with long, structured 5'UTRs.

4.
ATS Sch ; 3(3): 358-378, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36312807

RESUMO

The National Institute of General Medical Sciences Medical Scientist Training Program (MSTP) has been successful in producing clinician-scientists, with a majority of graduates pursuing research-related careers. However, there are a number of areas of continuing concern for the program. In particular, women and individuals from certain racial and ethnic backgrounds remain persistently underrepresented in MSTPs relative to the average college-aged U.S. population and to students receiving life sciences bachelor's degrees. The authors, who include leaders of NIGMS, identify a number of challenges and opportunities for enhancing diversity, equity and inclusion in the MSTPs and suggest strategies for addressing them.

5.
Cell ; 184(12): 3075-3079, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34115967

RESUMO

NIH has acknowledged and committed to ending structural racism. The framework for NIH's approach, summarized here, includes understanding barriers; developing robust health disparities/equity research; improving its internal culture; being transparent and accountable; and changing the extramural ecosystem so that diversity, equity, and inclusion are reflected in funded research and the biomedical workforce.


Assuntos
Pesquisa Biomédica , National Institutes of Health (U.S.) , Racismo Sistêmico , Diversidade Cultural , Humanos , Apoio à Pesquisa como Assunto/economia , Estados Unidos
6.
Mol Biol Cell ; 31(22): 2409-2414, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33054637

RESUMO

The National Institute of General Medical Sciences (NIGMS) at the U.S. National Institutes of Health (NIH) is committed to supporting the safety of the nation's biomedical research and training environments. Institutional training grants affect many trainees and can have a broad influence across their parent institutions, making them good starting points for our initial efforts to promote the development and maintenance of robust cultures of safety at U.S. academic institutions. In this Perspective, we focus on laboratory safety, although many of the strategies we describe for improving laboratory safety are also applicable to other forms of safety including the prevention of harassment, intimidation, and discrimination. We frame the problem of laboratory safety using a number of recent examples of tragic accidents, highlight some of the lessons that have been learned from these and other events, discuss what NIGMS is doing to address problems related to laboratory safety, and outline steps that institutions can take to improve their safety cultures.


Assuntos
Pesquisa Biomédica/educação , Segurança/normas , Humanos , National Institutes of Health (U.S.) , Estados Unidos
7.
Elife ; 92020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32469309

RESUMO

Yeast DEAD-box helicase Ded1 stimulates translation initiation, particularly of mRNAs with structured 5'UTRs. Interactions of the Ded1 N-terminal domain (NTD) with eIF4A, and Ded1-CTD with eIF4G, subunits of eIF4F, enhance Ded1 unwinding activity and stimulation of preinitiation complex (PIC) assembly in vitro. However, the importance of these interactions, and of Ded1-eIF4E association, in vivo were poorly understood. We identified separate amino acid clusters in the Ded1-NTD required for binding to eIF4A or eIF4E in vitro. Disrupting each cluster selectively impairs native Ded1 association with eIF4A or eIF4E, and reduces cell growth, polysome assembly, and translation of reporter mRNAs with structured 5'UTRs. It also impairs Ded1 stimulation of PIC assembly on a structured mRNA in vitro. Ablating Ded1 interactions with eIF4A/eIF4E unveiled a requirement for the Ded1-CTD for robust initiation. Thus, Ded1 function in vivo is stimulated by independent interactions of its NTD with eIF4E and eIF4A, and its CTD with eIF4G.


Assuntos
RNA Helicases DEAD-box/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Biossíntese de Proteínas , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/química , Fator de Iniciação 4F em Eucariotos/genética , Regulação Fúngica da Expressão Gênica , Polirribossomos/genética , Polirribossomos/metabolismo , Ligação Proteica , Domínios Proteicos , RNA Helicases/química , RNA Helicases/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
8.
RNA ; 26(4): 419-438, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31915290

RESUMO

The translation preinitiation complex (PIC) scans the mRNA for an AUG codon in a favorable context. Previous findings suggest that the factor eIF1 discriminates against non-AUG start codons by impeding full accommodation of Met-tRNAi in the P site of the 40S ribosomal subunit, necessitating eIF1 dissociation for start codon selection. Consistent with this, yeast eIF1 substitutions that weaken its binding to the PIC increase initiation at UUG codons on a mutant his4 mRNA and particular synthetic mRNA reporters; and also at the AUG start codon of the mRNA for eIF1 itself owing to its poor Kozak context. It was not known however whether such eIF1 mutants increase initiation at suboptimal start codons genome-wide. By ribosome profiling, we show that the eIF1-L96P variant confers increased translation of numerous upstream open reading frames (uORFs) initiating with either near-cognate codons (NCCs) or AUGs in poor context. The increased uORF translation is frequently associated with the reduced translation of the downstream main coding sequences (CDS). Initiation is also elevated at certain NCCs initiating amino-terminal extensions, including those that direct mitochondrial localization of the GRS1 and ALA1 products, and at a small set of main CDS AUG codons with especially poor context, including that of eIF1 itself. Thus, eIF1 acts throughout the yeast translatome to discriminate against NCC start codons and AUGs in poor context; and impairing this function enhances the repressive effects of uORFs on CDS translation and alters the ratios of protein isoforms translated from near-cognate versus AUG start codons.


Assuntos
Códon de Iniciação , Fator de Iniciação 1 em Eucariotos/metabolismo , Fases de Leitura Aberta , Iniciação Traducional da Cadeia Peptídica , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Glicina-tRNA Ligase/genética , Glicina-tRNA Ligase/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
BMC Biol ; 17(1): 101, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31810458

RESUMO

BACKGROUND: Translation of an mRNA in eukaryotes starts at an AUG codon in most cases, but near-cognate codons (NCCs) such as UUG, ACG, and AUU can also be used as start sites at low levels in Saccharomyces cerevisiae. Initiation from NCCs or AUGs in the 5'-untranslated regions (UTRs) of mRNAs can lead to translation of upstream open reading frames (uORFs) that might regulate expression of the main ORF (mORF). Although there is some circumstantial evidence that the translation of uORFs can be affected by environmental conditions, little is known about how it is affected by changes in growth temperature. RESULTS: Using reporter assays, we found that changes in growth temperature can affect translation from NCC start sites in yeast cells, suggesting the possibility that gene expression could be regulated by temperature by altering use of different uORF start codons. Using ribosome profiling, we provide evidence that growth temperature regulates the efficiency of translation of nearly 200 uORFs in S. cerevisiae. Of these uORFs, most that start with an AUG codon have increased translational efficiency at 37 °C relative to 30 °C and decreased efficiency at 20 °C. For translationally regulated uORFs starting with NCCs, we did not observe a general trend for the direction of regulation as a function of temperature, suggesting mRNA-specific features can determine the mode of temperature-dependent regulation. Consistent with this conclusion, the position of the uORFs in the 5'-leader relative to the 5'-cap and the start codon of the main ORF correlates with the direction of temperature-dependent regulation of uORF translation. We have identified several novel cases in which changes in uORF translation are inversely correlated with changes in the translational efficiency of the downstream main ORF. Our data suggest that translation of these mRNAs is subject to temperature-dependent, uORF-mediated regulation. CONCLUSIONS: Our data suggest that alterations in the translation of specific uORFs by temperature can regulate gene expression in S. cerevisiae.


Assuntos
Códon de Iniciação/metabolismo , Fases de Leitura Aberta/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Regiões 5' não Traduzidas , Temperatura
10.
Nucleic Acids Res ; 47(16): 8785-8806, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31299079

RESUMO

RNA structures that impede ribosome binding or subsequent scanning of the 5'-untranslated region (5'-UTR) for the AUG initiation codon reduce translation efficiency. Yeast DEAD-box RNA helicase Ded1 appears to promote translation by resolving 5'-UTR structures, but whether its paralog, Dbp1, performs similar functions is unknown. Furthermore, direct in vivo evidence was lacking that Ded1 or Dbp1 resolves 5'-UTR structures that impede attachment of the 43S preinitiation complex (PIC) or scanning. Here, profiling of translating 80S ribosomes reveals that the translational efficiencies of many more mRNAs are reduced in a ded1-ts dbp1Δ double mutant versus either single mutant, becoming highly dependent on Dbp1 or Ded1 only when the other helicase is impaired. Such 'conditionally hyperdependent' mRNAs contain unusually long 5'-UTRs with heightened propensity for secondary structure and longer transcript lengths. Consistently, overexpressing Dbp1 in ded1 cells improves the translation of many such Ded1-hyperdependent mRNAs. Importantly, Dbp1 mimics Ded1 in conferring greater acceleration of 48S PIC assembly in a purified system on mRNAs harboring structured 5'-UTRs. Profiling 40S initiation complexes in ded1 and dbp1 mutants provides direct evidence that Ded1 and Dbp1 cooperate to stimulate both PIC attachment and scanning on many Ded1/Dbp1-hyperdependent mRNAs in vivo.


Assuntos
RNA Helicases DEAD-box/genética , Regulação Fúngica da Expressão Gênica , Biossíntese de Proteínas , RNA Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Regiões 5' não Traduzidas , RNA Helicases DEAD-box/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Conformação de Ácido Nucleico , RNA Fúngico/química , RNA Fúngico/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Elife ; 72018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30475211

RESUMO

In eukaryotic translation initiation, AUG recognition of the mRNA requires accommodation of Met-tRNAi in a 'PIN' state, which is antagonized by the factor eIF1. eIF5 is a GTPase activating protein (GAP) of eIF2 that additionally promotes stringent AUG selection, but the molecular basis of its dual function was unknown. We present a cryo-electron microscopy (cryo-EM) reconstruction of a yeast 48S pre-initiation complex (PIC), at an overall resolution of 3.0 Å, featuring the N-terminal domain (NTD) of eIF5 bound to the 40S subunit at the location vacated by eIF1. eIF5 interacts with and allows a more accommodated orientation of Met-tRNAi. Substitutions of eIF5 residues involved in the eIF5-NTD/tRNAi interaction influenced initiation at near-cognate UUG codonsin vivo, and the closed/open PIC conformation in vitro, consistent with direct stabilization of the codon:anticodon duplex by the wild-type eIF5-NTD. The present structure reveals the basis for a key role of eIF5 in start-codon selection.


Assuntos
Fator de Iniciação 1 em Eucariotos/genética , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Ribossomos/genética , Sítios de Ligação , Códon de Iniciação/genética , Microscopia Crioeletrônica , Fator de Iniciação 2 em Eucariotos/genética , Regulação Fúngica da Expressão Gênica , Subunidades Ribossômicas Menores de Eucariotos/genética , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Fator de Iniciação de Tradução Eucariótico 5A
12.
Elife ; 72018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30281017

RESUMO

DEAD-box RNA helicase Ded1 is thought to resolve secondary structures in mRNA 5'-untranslated regions (5'-UTRs) that impede 48S preinitiation complex (PIC) formation at the initiation codon. We reconstituted Ded1 acceleration of 48S PIC assembly on native mRNAs in a pure system, and recapitulated increased Ded1-dependence of mRNAs that are Ded1-hyperdependent in vivo. Stem-loop (SL) structures in 5'-UTRs of native and synthetic mRNAs increased the Ded1 requirement to overcome their intrinsically low rates of 48S PIC recruitment. Ded1 acceleration of 48S assembly was greater in the presence of eIF4F, and domains mediating one or more Ded1 interactions with eIF4G or helicase eIF4A were required for efficient recruitment of all mRNAs; however, the relative importance of particular Ded1 and eIF4G domains were distinct for each mRNA. Our results account for the Ded1 hyper-dependence of mRNAs with structure-prone 5'-UTRs, and implicate an eIF4E·eIF4G·eIF4A·Ded1 complex in accelerating 48S PIC assembly on native mRNAs.


Assuntos
RNA Helicases DEAD-box/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Regiões 5' não Traduzidas/genética , Sequência de Bases , Biocatálise , Cinética , Modelos Biológicos , Conformação de Ácido Nucleico , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Elife ; 62017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29206102

RESUMO

The translation pre-initiation complex (PIC) scans the mRNA for an AUG codon in favorable context, and AUG recognition stabilizes a closed PIC conformation. The unstructured N-terminal tail (NTT) of yeast eIF1A deploys five basic residues to contact tRNAi, mRNA, or 18S rRNA exclusively in the closed state. Interestingly, EIF1AX mutations altering the human eIF1A NTT are associated with uveal melanoma (UM). We found that substituting all five basic residues, and seven UM-associated substitutions, in yeast eIF1A suppresses initiation at near-cognate UUG codons and AUGs in poor context. Ribosome profiling of NTT substitution R13P reveals heightened discrimination against unfavorable AUG context genome-wide. Both R13P and K16D substitutions destabilize the closed complex at UUG codons in reconstituted PICs. Thus, electrostatic interactions involving the eIF1A NTT stabilize the closed conformation and promote utilization of suboptimal start codons. We predict UM-associated mutations alter human gene expression by increasing discrimination against poor initiation sites.


Assuntos
Fator de Iniciação 1 em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos , Análise Mutacional de DNA , Fator de Iniciação 1 em Eucariotos/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/metabolismo , RNA de Transferência/metabolismo
14.
Elife ; 62017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192585

RESUMO

eIF4A is a DEAD-box RNA-dependent ATPase thought to unwind RNA secondary structure in the 5'-untranslated regions (UTRs) of mRNAs to promote their recruitment to the eukaryotic translation pre-initiation complex (PIC). We show that eIF4A's ATPase activity is markedly stimulated in the presence of the PIC, independently of eIF4E•eIF4G, but dependent on subunits i and g of the heteromeric eIF3 complex. Surprisingly, eIF4A accelerated the rate of recruitment of all mRNAs tested, regardless of their degree of structural complexity. Structures in the 5'-UTR and 3' of the start codon synergistically inhibit mRNA recruitment in a manner relieved by eIF4A, indicating that the factor does not act solely to melt hairpins in 5'-UTRs. Our findings that eIF4A functionally interacts with the PIC and plays important roles beyond unwinding 5'-UTR structure is consistent with a recent proposal that eIF4A modulates the conformation of the 40S ribosomal subunit to promote mRNA recruitment.


Assuntos
Fator de Iniciação 4F em Eucariotos/metabolismo , RNA Helicases/metabolismo , RNA Fúngico/química , RNA Mensageiro/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regiões 5' não Traduzidas , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Ligação Proteica , Conformação Proteica , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
15.
Proc Natl Acad Sci U S A ; 114(11): E2126-E2135, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28223523

RESUMO

The eukaryotic 43S preinitiation complex (PIC) bearing Met-tRNAiMet in a ternary complex (TC) with eukaryotic initiation factor (eIF)2-GTP scans the mRNA leader for an AUG codon in favorable "Kozak" context. AUG recognition provokes rearrangement from an open PIC conformation with TC bound in a state not fully engaged with the P site ("POUT") to a closed, arrested conformation with TC tightly bound in the "PIN" state. Yeast ribosomal protein Rps3/uS3 resides in the mRNA entry channel of the 40S subunit and contacts mRNA via conserved residues whose functional importance was unknown. We show that substitutions of these residues reduce bulk translation initiation and diminish initiation at near-cognate UUG start codons in yeast mutants in which UUG selection is abnormally high. Two such substitutions-R116D and R117D-also increase discrimination against an AUG codon in suboptimal Kozak context. Consistently, the Arg116 and Arg117 substitutions destabilize TC binding to 48S PICs reconstituted in vitro with mRNA harboring a UUG start codon, indicating destabilization of the closed PIN state with a UUG-anticodon mismatch. Using model mRNAs lacking contacts with either the mRNA entry or exit channels of the 40S subunit, we demonstrate that Arg116/Arg117 are crucial for stabilizing PIC-mRNA contacts at the entry channel, augmenting the function of eIF3 at both entry and exit channels. The corresponding residues in bacterial uS3 promote the helicase activity of the elongating ribosome, suggesting that uS3 contacts with mRNA enhance multiple phases of translation across different domains of life.


Assuntos
Códon de Iniciação , Complexos Multiproteicos/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Alelos , Substituição de Aminoácidos , Fator de Iniciação 5 em Eucariotos/química , Fator de Iniciação 5 em Eucariotos/genética , Fator de Iniciação 5 em Eucariotos/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Mutação , Fenótipo , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Eucariotos/química
16.
RNA Biol ; 14(2): 188-196, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27981882

RESUMO

In vitro studies of translation provide critical mechanistic details, yet purification of large amounts of highly active eukaryotic ribosomes remains a challenge for biochemists and structural biologists. Here, we present an optimized method for preparation of highly active yeast ribosomes that could easily be adapted for purification of ribosomes from other species. The use of a nitrogen mill for cell lysis coupled with chromatographic purification of the ribosomes results in 10-fold-increased yield and less variability compared with the traditional approach, which relies on sedimentation through sucrose cushions. We demonstrate that these ribosomes are equivalent to those made using the traditional method in a host of in vitro assays, and that utilization of this new method will consistently produce high yields of active yeast ribosomes.


Assuntos
Resinas de Troca Aniônica , Cromatografia por Troca Iônica , Ribossomos , Leveduras/metabolismo , Resinas de Troca Aniônica/química , Técnicas In Vitro , Cloreto de Potássio/química , Biossíntese de Proteínas , Ribossomos/metabolismo
17.
Elife ; 52016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782884

RESUMO

Eukaryotic translation initiation factor 3 (eIF3) is a central player in recruitment of the pre-initiation complex (PIC) to mRNA. We probed the effects on mRNA recruitment of a library of S. cerevisiae eIF3 functional variants spanning its 5 essential subunits using an in vitro-reconstituted system. Mutations throughout eIF3 disrupt its interaction with the PIC and diminish its ability to accelerate recruitment to a native yeast mRNA. Alterations to the eIF3a CTD and eIF3b/i/g significantly slow mRNA recruitment, and mutations within eIF3b/i/g destabilize eIF2•GTP•Met-tRNAi binding to the PIC. Using model mRNAs lacking contacts with the 40S entry or exit channels, we uncovered a critical role for eIF3 requiring the eIF3a NTD, in stabilizing mRNA interactions at the exit channel, and an ancillary role at the entry channel requiring residues of the eIF3a CTD. These functions are redundant: defects at each channel can be rescued by filling the other channel with mRNA.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Análise Mutacional de DNA , Fator de Iniciação 3 em Eucariotos/genética , Guanosina Trifosfato/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Biossíntese de Proteínas , Subunidades Proteicas/genética , RNA de Transferência de Metionina/metabolismo , Saccharomyces cerevisiae/genética
20.
Mol Cell ; 59(3): 399-412, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26212456

RESUMO

Translation initiation in eukaryotes begins with the formation of a pre-initiation complex (PIC) containing the 40S ribosomal subunit, eIF1, eIF1A, eIF3, ternary complex (eIF2-GTP-Met-tRNAi), and eIF5. The PIC, in an open conformation, attaches to the 5' end of the mRNA and scans to locate the start codon, whereupon it closes to arrest scanning. We present single particle cryo-electron microscopy (cryo-EM) reconstructions of 48S PICs from yeast in these open and closed states, at 6.0 Å and 4.9 Å, respectively. These reconstructions show eIF2ß as well as a configuration of eIF3 that appears to encircle the 40S, occupying part of the subunit interface. Comparison of the complexes reveals a large conformational change in the 40S head from an open mRNA latch conformation to a closed one that constricts the mRNA entry channel and narrows the P site to enclose tRNAi, thus elucidating key events in start codon recognition.


Assuntos
Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/metabolismo , Kluyveromyces/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Kluyveromyces/química , Modelos Moleculares , Iniciação Traducional da Cadeia Peptídica , Ligação Proteica , Conformação Proteica , Multimerização Proteica , RNA Fúngico/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...