Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893975

RESUMO

The availability of new-generation femtosecond lasers capable of delivering pulses with energies in the hundreds of mJ, or even in the joules range, has called for a revision of the effect of scaling spot size on the material distribution within the plasma plume. Employing a state-of-the-art Szatmári-type hybrid dye-excimer laser system emitting 248 nm pulses with a maximum energy of 20 mJ and duration of 600 fs, copper films were grown in the classical pulsed laser deposition geometry. The exceptionally clean temporal profile of the laser pulses yielded a femtosecond component of 4.18 ± 0.19 mJ, accompanied by a 0.22 ± 0.01 mJ ASE pedestal on the target surface. While varying the spot sizes, the plasma plume consistently exhibited an extremely forward-peaked distribution. Deposition rates, defined as peak thickness per number of pulses, ranged from 0.030 to 0.114 nm/pulse, with a gradual narrowing of the thickness distribution as the spot area increased from 0.085 to 1.01 mm2 while keeping the pulse energy constant. The material distribution on the silicon substrates was characterized using the f(Θ) = AcoskΘ + (1 - A)cospΘ formalism, revealing exponents characterizing the forward-peaked component of the thickness profile of the film material along the axes, ranging from k = 15 up to exceptionally high values exceeding 50, as the spot area increased. Consequently, spot size control and outstanding beam quality ensured that majority of the ablated material was confined to the central region of the plume, indicating the potential of PLD (pulsed laser deposition) for highly efficient localized deposition of exotic materials.

2.
Materials (Basel) ; 16(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36770274

RESUMO

Copper thin films are intended to serve as a cover layer of photocathodes that are deposited by ablating copper targets in a high vacuum by temporally clean 600 fs laser pulses at 248 nm. The extremely forward-peaked plume produced by the ultrashort UV pulses of high-energy contrast ensures fast film growth. The deposition rate, defined as peak thickness per number of pulses, rises from 0.03 to 0.11 nm/pulse with an increasing ablated area while keeping the pulse energy constant. The material distribution over the surface-to-be-coated can also effectively be controlled by tuning the dimensions of the ablated area: surface patterning from airbrush-like to broad strokes is available. The well-adhering films of uniform surface morphology consist of densely packed lentil-like particles of several hundred nm in diameter and several ten nm in height. Task-optimized ultrashort UV laser deposition is thereby an effective approach for the production of thin film patterns of predetermined geometry, serving e.g., as critical parts of photocathodes.

3.
Nanomaterials (Basel) ; 12(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35055230

RESUMO

Over the past decade, interest about metal halide perovskites has rapidly increased, as they can find wide application in optoelectronic devices. Nevertheless, although thermal evaporation is crucial for the development and engineering of such devices based on multilayer structures, the optical properties of thermally deposited perovskite layers (spontaneous and amplified spontaneous emission) have been poorly investigated. This paper is a study from a nano- to micro- and macro-scale about the role of light-emitting species (namely free carriers and excitons) and trap states in the spontaneous emission of thermally evaporated thin layers of CH3NH3PbBr3 perovskite after wet air UV light trap passivation. The map of light emission from grains, carried out by SNOM at the nanoscale and by micro-PL techniques, clearly indicates that free and localized excitons (EXs) are the dominant light-emitting species, the localized excitons being the dominant ones in the presence of crystallites. These species also have a key role in the amplified spontaneous emission (ASE) process: for higher excitation densities, the relative contribution of localized EXs basically remains constant, while a clear competition between ASE and free EXs spontaneous emission is present, which suggests that ASE is due to stimulated emission from the free EXs.

4.
Nanomaterials (Basel) ; 11(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375563

RESUMO

Pulsed laser deposition on 3-dimensional micro-objects of complex morphology is demonstrated by the paradigmatic growth of cellulose and polymer/Y3Al5O12:Ce phosphor composite nanolayers. Congruent materials transfer is a result of multicomponent ablation performed by relatively low fluence (<200 mJ cm-2) ArF excimer laser pulses (λ = 193 nm). Films grown on optical and engineering components, having a thickness from ~50 nm to more than ~300 nm, are durable, well adherent and maintain the structural and functional properties of the parent solids. The results verify the unique capabilities of deep-ultraviolet pulsed laser deposition of novel functional nanostructures on arbitrary surface morphologies and highlight its potential in future 3-dimensional nanotechnologies.

5.
Artigo em Inglês | MEDLINE | ID: mdl-26651798

RESUMO

We demonstrate that chemical reactions leading to the formation of AlO radicals in plasmas produced by ablation of aluminum or Ti-sapphire with ultraviolet nanosecond laser pulses can be predicted by the model of local thermodynamic equilibrium. Therefore, emission spectra recorded with an echelle spectrometer and a gated detector were compared to the spectral radiance computed for uniform and nonuniform equilibrium plasmas. The calculations are based on analytical solutions of the radiation transfer equation. The simulations show that the plasmas produced in argon background gas are almost uniform, whereas temperature and density gradients are evidenced in air. Furthermore, chemical reactions exclusively occur in the cold plume periphery for ablation in air. The formation of AlO is negligible in argon as the plasma temperature is too large in the time interval of interest up to several microseconds. Finally, the validity of local thermodynamic equilibrium is shown to depend on time, space, and on the elemental composition. The presented conclusions are of interest for material analysis via laser-induced breakdown spectroscopy and for laser materials processing.

6.
Radiat Res ; 165(5): 532-7, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16669707

RESUMO

recA1, recA13 and recA56 are considered null alleles of the Escherichia coli recA gene because they were shown to have essentially no activity in vivo. In this study, we used strains harboring the recA null alleles and their recA-proficient congenic counterpart to assess the lethal and the mutagenic effects elicited by near-UV(308 nm) coherent radiation generated by a XeCl excimer laser. We compared these effects with those produced by a conventional far-UV(254 nm) germicidal lamp. Compared to the germicidal lamp, the excimer laser was able to better discriminate the different recA-defective strains on the basis of their UV-radiation sensitivity, which was progressively higher in the strains with the alleles in the order recA1, recA56 and recA13. This finding was consistent with previous data on residual biochemical activities of the respective mutated RecA proteins in vitro. The discrepancy between the results obtained with the lamp and laser irradiation suggested that the biological response to the two radiations involves distinct mechanisms. This hypothesis was supported by the evidence that exposure to near-UV(308 nm) radiation induced mutagenesis in recA-defective strains at an extent considerably greater than in recA-proficient strains. In contrast, far-UV(254 nm)-radiation-induced mutagenesis was reported to be largely dependent on a functional recA allele.


Assuntos
Escherichia coli/fisiologia , Escherichia coli/efeitos da radiação , Lasers , Mutação/fisiologia , Mutação/efeitos da radiação , Recombinases Rec A/metabolismo , Raios Ultravioleta , Sobrevivência Celular/efeitos da radiação , Cloretos , Relação Dose-Resposta à Radiação , Escherichia coli/citologia , Doses de Radiação , Recombinases Rec A/genética , Xenônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...