Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Motil Cytoskeleton ; 37(3): 183-98, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-9227849

RESUMO

Do adult cardiomyocytes use the same pathways hypothesized for the formation of myofibrils in embryonic cardiomyocytes in tissue culture. [Rhee, et al., Cell Motil. Cytoskeleton 28:1-24, 1994]? Premyofibrils in embryonic cardiomyocytes are composed of short sarcomeric units of alpha-actinin (Z-bodies) and actin filaments held together by short nonmuscle myosin IIB filaments. Premyofibrils are believed to be transformed into nascent myofibrils by their capture of muscle-specific myosin II filaments aligned in aperiodic arrays. Nascent myofibrils are thought to transform into mature myofibrils by the loss of nonmuscle myosin IIB, the fusion of the Z-bodies into Z-bands, and the periodic alignment of muscle myosin II filaments into A-bands. Freshly isolated cat and rat adult cardiomyocytes placed in tissue culture lack premyofibrils and nascent myofibrils. Adult cardiomyocytes spreading in culture reinitiate the synthesis of nonmuscle myosin IIB. Moreover, patterns similar to the proposed embryonic myofibrillar program first detected in spreading chick embryonic hearts were also detected in these spreading adult mammalian cardiomyocytes. The isolated adult cardiomyocytes begin to spread after 1 day in culture by sending out lamellipodia. When these cells are injected with fluorescently labeled alpha-actinin, linear arrays of short spacings of beaded alpha-actinin bodies are detected in the spreading edges of the adult cardiomyocytes. These dense bodies (Z-bodies) stain positively for the same sarcomeric-specific isoform of alpha-actinin that is in the Z-bands of mature sarcomeres. These linear arrays of alpha-actinin-containing Z-bodies have other characteristics of premyofibrils and are detected only in the spreading regions of the cells. Thus, these premyofibrils at the edges of the spreading adult cardiomyocytes stain positively for nonmuscle myosin IIB but negatively for muscle-specific myosin II. Initially, no vinculin is associated with any parts of the premyofibrils in the spreading regions of the early spreading cardiomyocytes. However, later, vinculin is found to be associated with the ends of the premyofibrils. Fibers that stain solidly for muscle-specific myosin II (i.e., nascent myofibrils) are localized between the peripheral premyofibrils and the centrally positioned, mature myofibrils. It is suggested that the puzzling ability of cardiomyocytes in hypertrophic hearts to reinitiate the synthesis of fetal sarcomeric proteins may be related to the reinitiation of the embryonic premyofibril program for myofibrillogenesis.


Assuntos
Embrião de Mamíferos/fisiologia , Miocárdio/citologia , Miofibrilas/fisiologia , Animais , Gatos , Adesão Celular/fisiologia , Células Cultivadas , Senescência Celular/fisiologia , Coração/embriologia , Miocárdio/química , Miofibrilas/química , Ratos , Vinculina/análise
2.
J Appl Physiol (1985) ; 75(4): 1502-6, 1993 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8282595

RESUMO

The effect of 17 beta-estradiol 3-benzoate (10 micrograms.01 ml of sunflower oil-1 x 100 g body wt-1) on the temporal pattern of exercise-induced tissue glycogen depletion and tissue lipid availability during submaximal treadmill running was determined in male rats. Animal were administered estradiol or oil for 5 days and were then time matched for motorized treadmill running for 30, 60, 90, or 120 min. Significant depletion of liver, soleus muscle, and red and white vastus lateralis muscle tissue glycogen occurred in oil-administered animals run between 30 and 120 min. The greatest extent of tissue glycogen depletion occurred during the first 30 min of exercise with the rate of glycogen depletion slowing between 30 and 120 min of exercise. Administration of estradiol attenuated the temporal pattern of glycogen depletion in both liver and muscle tissues. Significant depletion of red and white vastus glycogen of estradiol-administered animals did not occur until 90 and 120 min of exercise, respectively. Administration of estradiol significantly increased resting plasma free fatty acids and red and white vastus triacylglycerol content. These data indicate that estradiol administration for 5 days resulted in significant glycogen sparing of liver and muscle tissues during submaximal treadmill running for up to 120 min by altering the temporal pattern of glycogen depletion of male rats secondary to an estradiol-mediated increase in availability of lipid substrate during exercise.


Assuntos
Estradiol/farmacologia , Glicogênio/fisiologia , Esforço Físico/fisiologia , Animais , Ácidos Graxos não Esterificados/sangue , Glicogênio Hepático/metabolismo , Masculino , Músculos/efeitos dos fármacos , Músculos/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Triglicerídeos/metabolismo
3.
Cell Motil Cytoskeleton ; 21(2): 111-22, 1992.
Artigo em Inglês | MEDLINE | ID: mdl-1559262

RESUMO

When fluorescently labeled contractile proteins are injected into embryonic muscle cells, they become incorporated into the cells' myofibrils. In order to determine if this exchange of proteins is unique to the embryonic stage of development, we isolated adult cardiac myocytes and microinjected them with fluorescently labeled actin, myosin light chains, alpha-actinin, and vinculin. Each of these proteins was incorporated into the adult cardiomyocytes and was colocalized with the cells' native proteins, despite the fact that the labeled proteins were prepared from noncardiac tissues. Within 10 min of injection, alpha-actinin was incorporated into Z-bands surrounding the site of injection. Similarly, 30 sec after injection, actin was incorporated into the entire I-bands at the site of injection. Following a 3-h incubation, increased actin fluorescence was noted at the intercalated disc. Vinculin exchange was seen in the intercalated discs, as well as in the Z-bands throughout the cells. Myosin light chains required 4-6 h after injection to become incorporated into the A-bands of the adult muscle. Nonspecific proteins, such as fluorescent BSA, showed no association with the myofibrils or the former intercalated discs. When adult cells were maintained in culture for 10 days, they retain the ability to incorporate these contractile proteins into their myofibrils. T-tubules and the sarcoplasmic reticulum could be detected in periodic arrays in the freshly isolated cells using the membrane dye WW781 and DiOC6[3], respectively. In conclusion, the myofibrils in adult, as in embryonic, muscle cells are dynamic structures, permitting isoform transitions without dismantling of the myofibrils.


Assuntos
Actinina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Miosinas/metabolismo , Retículo Sarcoplasmático/química , Vinculina/metabolismo , Actinina/análise , Actinas/análise , Animais , Células Cultivadas , Corantes Fluorescentes , Masculino , Microinjeções , Miocárdio/citologia , Faloidina , Ratos , Ratos Endogâmicos , Vinculina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...