Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 10(3)2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064835

RESUMO

Mobilized colistin resistance (mcr) genes are plasmid-borne genes that confer resistance to colistin, an antibiotic used to treat severe bacterial infections. To date, eight known mcr homologues have been described (mcr-1 to -8). Here, we describe mcr-9, a novel mcr homologue detected during routine in silico screening of sequenced Salmonella genomes for antimicrobial resistance genes. The amino acid sequence of mcr-9, detected in a multidrug-resistant (MDR) Salmonella enterica serotype Typhimurium (S Typhimurium) strain isolated from a human patient in Washington State in 2010, most closely resembled mcr-3, aligning with 64.5% amino acid identity and 99.5% coverage using Translated Nucleotide BLAST (tblastn). The S. Typhimurium strain was tested for phenotypic resistance to colistin and was found to be sensitive at the 2-mg/liter European Committee on Antimicrobial Susceptibility Testing breakpoint under the tested conditions. mcr-9 was cloned in colistin-susceptible Escherichia coli NEB5α under an IPTG (isopropyl-ß-d-thiogalactopyranoside)-induced promoter to determine whether it was capable of conferring resistance to colistin when expressed in a heterologous host. Expression of mcr-9 conferred resistance to colistin in E. coli NEB5α at 1, 2, and 2.5 mg/liter colistin, albeit at a lower level than mcr-3 Pairwise comparisons of the predicted protein structures associated with all nine mcr homologues (Mcr-1 to -9) revealed that Mcr-9, Mcr-3, Mcr-4, and Mcr-7 share a high degree of similarity at the structural level. Our results indicate that mcr-9 is capable of conferring phenotypic resistance to colistin in Enterobacteriaceae and should be immediately considered when monitoring plasmid-mediated colistin resistance.IMPORTANCE Colistin is a last-resort antibiotic that is used to treat severe infections caused by MDR and extensively drug-resistant (XDR) bacteria. The World Health Organization (WHO) has designated colistin as a "highest priority critically important antimicrobial for human medicine" (WHO, Critically Important Antimicrobials for Human Medicine, 5th revision, 2017, https://www.who.int/foodsafety/publications/antimicrobials-fifth/en/), as it is often one of the only therapies available for treating serious bacterial infections in critically ill patients. Plasmid-borne mcr genes that confer resistance to colistin pose a threat to public health at an international scale, as they can be transmitted via horizontal gene transfer and have the potential to spread globally. Therefore, the establishment of a complete reference of mcr genes that can be used to screen for plasmid-mediated colistin resistance is essential for developing effective control strategies.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Escherichia coli/genética , Transferência Genética Horizontal , Humanos , Sorogrupo
2.
Mol Psychiatry ; 22(6): 884-899, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27021817

RESUMO

Many psychiatric disorders are highly heritable and may represent the clinical outcome of early aberrations in the formation of neural networks. The placement of brain connectivity as an 'intermediate phenotype' renders it an attractive target for exploring its interaction with genomics and behavior. Given the complexity of genetic make up and phenotypic heterogeneity in humans, translational studies are indicated. Recently, we demonstrated that a mouse model with heterozygous knockout of the key neurodevelopmental gene Ahi1 displays a consistent stress-resilient phenotype. Extending these data, the current research describes our multi-faceted effort to link early variations in Ahi1 expression with long-term consequences for functional brain networks and cognitive-emotional phenotypes. By combining behavioral paradigms with graph-based analysis of whole-brain functional networks, and then cross-validating the data with robust neuroinformatic data sets, our research suggests that physiological variation in gene expression during neurodevelopment is eventually translated into a continuum of global network metrics that serve as intermediate phenotypes. Within this framework, we suggest that organization of functional brain networks may result, in part, from an adaptive trade-off between efficiency and resilience, ultimately culminating in a phenotypic diversity that encompasses dimensions such as emotional regulation and cognitive function.


Assuntos
Rede Nervosa/fisiologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Animais , Encéfalo/fisiopatologia , Mapeamento Encefálico , Cognição/fisiologia , Emoções/fisiologia , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Mol Psychiatry ; 19(2): 243-52, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24042478

RESUMO

The Abelson helper integration site 1 (AHI1) gene has a pivotal role in brain development. Studies by our group and others have demonstrated association of AHI1 with schizophrenia and autism. To elucidate the mechanism whereby alteration in AHI1 expression may be implicated in the pathogenesis of neuropsychiatric disorders, we studied Ahi1 heterozygous knockout (Ahi1(+/-)) mice. Although their performance was not different from wild-type mice on tests that model classical schizophrenia-related endophenotypes, Ahi1(+/-) mice displayed an anxiolytic-like phenotype across different converging modalities. Using behavioral paradigms that involve exposure to environmental and social stress, significantly decreased anxiety was evident in the open field, elevated plus maze and dark-light box, as well as during social interaction in pairs. Assessment of core temperature and corticosterone secretion revealed a significantly blunted response of the autonomic nervous system and the hypothalamic-pituitary-adrenal axis in Ahi1(+/-) mice exposed to environmental and visceral stress. However, response to centrally acting anxiogenic compounds was intact. On resting-state functional MRI, connectivity of the amygdala with other brain regions involved in processing of anxiogenic stimuli and inhibitory avoidance learning, such as the lateral entorhinal cortex, ventral hippocampus and ventral tegmental area, was significantly reduced in the mutant mice. Taken together, our data link Ahi1 under-expression with a defect in the process of threat detection. Alternatively, the results could be interpreted as representing an anxiety-related endophenotype, possibly granting the Ahi1(+/-) mouse relative resilience to various types of stress. The current knockout model highlights the contribution of translational approaches to understanding the genetic basis of emotional regulation and its associated neurocircuitry, with possible relevance to neuropsychiatric disorders.


Assuntos
Ansiedade/fisiopatologia , Neurônios/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Estresse Psicológico/fisiopatologia , Proteínas Adaptadoras de Transporte Vesicular , Animais , Ansiedade/induzido quimicamente , Ansiedade/etiologia , Temperatura Corporal , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Encéfalo/fisiopatologia , Corticosterona/metabolismo , Meio Ambiente , Sistema Hipotálamo-Hipofisário/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/fisiologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Proteínas Proto-Oncogênicas/genética , Descanso/fisiologia , Esquizofrenia/fisiopatologia , Filtro Sensorial/fisiologia , Comportamento Social , Estresse Psicológico/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...