Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 87(6): 529-34, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18834879

RESUMO

Perturbed microRNA (miR) expression is a feature of, and may play a fundamental role in, certain disease states such as different forms of cancer. Retinitis pigmentosa (RP) a group of inherited retinal degenerations is characterised by a progressive loss of photoreceptor cells and consequent visual handicap. We have previously reported an altered pan-retinal expression of miR-96, -183, -1 and -133 in a P347S-Rhodopsin transgenic mouse model of RP. As many different mutations in Rhodopsin and other genes such as RDS/Peripherin can lead to RP, it was of interest to explore whether the characterized retinal miR expression signature was observed in three other mouse models of RP linked to rhodopsin and rds/peripherin. Therefore, pan-retinal expression of miR-96, -182, -183, -1, -133 and -142 was analysed using quantitative real-time RT-PCR. A common signature of altered miR expression was found; expression of miR-96, -182 and -183 decreased by 14.1-53.2%, while expression of miR-1, -133 and -142 was up-regulated by 186.1-538.5%. Significantly, the detected pan-retinal miR signature was mirrored by similar miR expression profiles in FACS-isolated rod photoreceptors from these mice. In an attempt to understand the function of these miRs, corresponding target genes were predicted using computational means. Many 'enriched' targets (with binding sites for at least two of the above miRs) were found to be regulatory molecules and members of intracellular signalling circuits. However, further studies are required to highlight which of the large number of in silico predicted targets are actually controlled by these miRs.


Assuntos
MicroRNAs/metabolismo , Retinose Pigmentar/genética , Animais , Modelos Animais de Doenças , Expressão Gênica , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Periferinas , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Rodopsina/genética , Rodopsina/metabolismo
2.
Genome Biol ; 8(11): R248, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18034880

RESUMO

BACKGROUND: The role played by microRNAs (miRs) as common regulators in physiologic processes such as development and various disease states was recently highlighted. Retinitis pigmentosa (RP) linked to RHO (which encodes rhodopsin) is the most frequent form of inherited retinal degeneration that leads to blindness, for which there are no current therapies. Little is known about the cellular mechanisms that connect mutations within RHO to eventual photoreceptor cell death by apoptosis. RESULTS: Global miR expression profiling using miR microarray technology and quantitative real-time RT-PCR (qPCR) was performed in mouse retinas. RNA samples from retina of a mouse model of RP carrying a mutant Pro347Ser RHO transgene and from wild-type retina, brain and a whole-body representation (prepared by pooling total RNA from eight different mouse organs) exhibited notably different miR profiles. Expression of retina-specific and recently described retinal miRs was semi-quantitatively demonstrated in wild-type mouse retina. Alterations greater than twofold were found in the expression of nine miRs in Pro347Ser as compared with wild-type retina (P < 0.05). Expression of miR-1 and miR-133 decreased by more than 2.5-fold (P < 0.001), whereas expression of miR-96 and miR-183 increased by more than 3-fold (P < 0.001) in Pro347Ser retinas, as validated by qPCR. Potential retinal targets for these miRs were predicted in silico. CONCLUSION: This is the first miR microarray study to focus on evaluating altered miR expression in retinal disease. Additionally, novel retinal preference for miR-376a and miR-691 was identified. The results obtained contribute toward elucidating the function of miRs in normal and diseased retina. Modulation of expression of retinal miRs may represent a future therapeutic strategy for retinopathies such as RP.


Assuntos
Modelos Animais de Doenças , Perfilação da Expressão Gênica , MicroRNAs/genética , Retina/metabolismo , Retinose Pigmentar/genética , Animais , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...