Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(26): 33259-33269, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904295

RESUMO

Herein, we report for the first time the use of vapor phase infiltration (VPI) to infuse conducting polymers with inorganic metal oxide clusters that together form a photocatalytic material. While vapor infiltration has previously been used to electrically dope conjugated polymers, this is the first time, to our knowledge, that the resultant hybrid material has been demonstrated to have photocatalytic properties. The system studied is poly(3-hexylthiophene-2,5-diyl) (P3HT) vapor infiltrated with TiCl4 and H2O to create P3HT-TiOx organic-inorganic hybrid photocatalytic materials. X-ray photoelectron spectroscopy analysis shows that P3HT-TiOx VPI films consist of a partially oxidized P3HT matrix, and the infiltrated titanium inorganic is in a 4+ oxidation state with mostly oxide coordination. Upon visible light illumination, these P3HT-TiOx hybrids degrade methylene blue dye molecules. The P3HT-TiOx hybrids are 4.6× more photocatalytically active than either the P3HT or TiO2 individually or when sequentially deposited (e.g., P3HT on TiO2). On a per surface area basis, these hybrid photocatalysts are comparable or better than other best in class polymer semiconductor photocatalysts. VPI of TiCl4 + H2O into P3HT makes a unique hybrid structure and idealized photocatalyst architecture by creating nanoscale TiOx clusters concentrated toward the surface achieving extremely high catalytic rates. The mechanism for this enhanced photocatalytic rate is understood using photoluminescence spectroscopy, which shows significant quenching of excitons in P3HT-TiOx as compared to neat P3HT, indicating that P3HT acts as a photosensitizer for the TiOx catalyst sites in the hybrid material. This work introduces a new approach to designing and synthesizing organic-inorganic hybrid photocatalytic materials, with expansive opportunities for further exploration and optimization.

2.
ACS Appl Mater Interfaces ; 16(8): 10372-10379, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38367252

RESUMO

Materials containing B, C, and O, due to the advantages of forming strong covalent bonds, may lead to materials that are superhard, i.e., those with a Vicker's hardness larger than 40 GPa. However, the exploration of this vast chemical, compositional, and configurational space is nontrivial. Here, we leverage a combination of machine learning (ML) and first-principles calculations to enable and accelerate such a targeted search. The ML models first screen for potentially superhard B-C-O compositions from a large hypothetical B-C-O candidate space. Atomic-level structure search using density functional theory (DFT) within those identified compositions, followed by further detailed analyses, unravels on four potentially superhard B-C-O phases exhibiting thermodynamic, mechanical, and dynamic stability.

3.
Chem Mater ; 36(2): 838-847, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38282685

RESUMO

This study examines the chemical reaction pathways for vapor phase infiltration (VPI) of TiCl4 into poly(methyl methacrylate) (PMMA). VPI is a processing method that transforms organic polymers into organic-inorganic hybrid materials with new properties of interest for microelectronic patterning, technical textiles, and chemical separations. Understanding the fundamental chemical mechanisms of the VPI process is essential for establishing approaches to design the chemical structure and properties of these hybrid materials. While prior work has suggested that TiCl4 infiltration into PMMA does not disrupt the polymer's carbonyl bond, a clear reaction mechanism has yet to be proposed. Here, we present a detailed X-ray photoelectron spectroscopy study that presents evidence for a concerted reaction mechanism that involves TiCl4 coordinating with the PMMA's ester group to dealkylate the methyl side group, creating a chloromethane byproduct and primary chemical bonds between the organic and inorganic components of the hybrid material. Additional spectroscopy, quartz crystal microbalance gravimetry, and thermophysical and chemical property measurements of this material, including solubility studies and thermal expansion measurements, provide further evidence for this chemical reaction pathway and the subsequent creation of inorganic cross-links that network these TiOx-PMMA hybrid materials.

4.
J Phys Chem C Nanomater Interfaces ; 127(25): 12206-12217, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37415971

RESUMO

Chemically doped poly[2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) shows promise for many organic electronic applications, but rationalizing its charge transport properties is challenging because conjugated polymers are inhomogeneous, with convoluted optical and solid-state transport properties. Herein, we use the semilocalized transport (SLoT) model to quantify how the charge transport properties of PBTTT change as a function of iron(III) chloride (FeCl3) doping level. We use the SLoT model to calculate fundamental transport parameters, including the carrier density needed for metal-like electrical conductivities and the position of the Fermi energy level with respect to the transport edge. We then contextualize these parameters with other polymer-dopant systems and previous PBTTT reports. Additionally, we use grazing incidence wide-angle X-ray scattering and spectroscopic ellipsometry techniques to better characterize inhomogeneity in PBTTT. Our analyses indicate that PBTTT obtains high electrical conductivities due to its quickly rising reduced Fermi energy level, and this rise is afforded by its locally high carrier densities in highly ordered microdomains. Ultimately, this report sets a benchmark for comparing transport properties across polymer-dopant-processing systems.

5.
Phys Chem Chem Phys ; 25(20): 14064-14073, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37161670

RESUMO

Vapor phase infiltration (VPI) is a post-polymerization modification technique that infuses inorganics into polymers to create organic-inorganic hybrid materials with new properties. Much is yet to be understood about the chemical kinetics underlying the VPI process. The aim of this study is to create a greater understanding of the process kinetics that govern the infiltration of trimethyl aluminum (TMA) and TiCl4 into PMMA to form inorganic-PMMA hybrid materials. To gain insight, this paper initially examines the predicted results for the spatiotemporal concentrations of inorganics computed from a recently posited reaction-diffusion model for VPI. This model provides insight on how the Damköhler number (reaction versus diffusion rates) and non-Fickian diffusional processes (hindering) that result from the material transforming from a polymer to a hybrid can affect the evolution of inorganic concentration depth profiles with time. Subsequently, experimental XPS depth profiles are collected for TMA and TiCl4 infiltrated PMMA films at 90 °C and 135 °C. The functional behavior of these depth profiles at varying infiltration times are qualitatively compared to various computed predictions and conclusions are drawn about the mechanisms of each of these processes. TMA infiltration into PMMA appears to transition from a diffusion-limited process at low temperatures (90 °C) to a reaction-limited process at high temperatures (135 °C) for the film thicknesses investigated here (200 nm). While TMA appears to fully infiltrate these 200 nm PMMA films within a few hours, TiCl4 infiltration into PMMA is considerably slower, with full saturation not occurring even after 2 days of precursor exposure. Infiltration at 90 °C is so slow that no clear conclusions about mechanism can be drawn; however, at 135 °C, the TiCl4 infiltration into PMMA is clearly a reaction-limited process, with TiCl4 permeating the entire thickness (at low concentrations) within only a few minutes, but inorganic loading continuously increasing in a uniform manner over a course of 2 days. Near-surface deviations from the uniform-loading expected for a reaction-limited process also suggest that diffusional hindering is high for TiCl4 infiltration into PMMA. These results demonstrate a new, ex situ analysis approach for investigating the rate-limiting process mechanisms for vapor phase infiltration.

6.
Nanoscale ; 15(13): 6187-6200, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916453

RESUMO

Poly(3,4-ethylene dioxythiophene) (PEDOT) has a high theoretical charge storage capacity, making it of interest for electrochemical applications including energy storage and water desalination. Nanoscale thin films of PEDOT are particularly attractive for these applications to enable faster charging. Recent work has demonstrated that nanoscale thin films of PEDOT can be formed using sequential gas-phase exposures via oxidative molecular layer deposition, or oMLD, which provides advantages in conformality and uniformity on high aspect ratio substrates over other deposition techniques. But to date, the electrochemical properties of these oMLD PEDOT thin films have not been well-characterized. In this work, we examine the electrochemical properties of 5-100 nm thick PEDOT films formed using 20-175 oMLD deposition cycles. We find that film thickness of oMLD PEDOT films affects the orientation of ordered domains leading to a substantial change in charge storage capacity. Interestingly, we observe a minimum in charge storage capacity for an oMLD PEDOT film thickness of ∼30 nm (60 oMLD cycles at 150 °C), coinciding with the highest degree of face-on oriented PEDOT domains as measured using grazing incidence wide angle X-ray scattering (GIWAXS). Thinner and thicker oMLD PEDOT films exhibit higher fractions of oblique (off-angle) orientations and corresponding increases in charge capacity of up to 120 mA h g-1. Electrochemical measurements suggest that higher charge capacity in films with mixed domain orientation arise from the facile transport of ions from the liquid electrolyte into the PEDOT layer. Greater exposure of the electrolyte to PEDOT domain edges is posited to facilitate faster ion transport in these mixed domain films. These insights will inform future design of PEDOT coated high-aspect ratio structures for electrochemical energy storage and water treatment.

7.
Nanoscale Adv ; 4(19): 4102-4113, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36285221

RESUMO

Selective deposition of hybrid and inorganic materials inside nanostructures could enable major nanotechnological advances. However, inserting ready-made composites inside nanocavities may be difficult, and therefore, stepwise approaches are needed. In this paper, a poly(ethyl acrylate) template is grown selectively inside cavities via condensation-controlled toposelective vapor deposition, and the polymer is then hybridized by alumina, titania, or zinc oxide. The hybridization is carried out by infiltrating the polymer with a vapor-phase metalorganic precursor and water vapor either via a short-pulse (atomic layer deposition, ALD) or a long-pulse (vapor phase infiltration, VPI) sequence. When the polymer-MO x hybrid material is calcined at 450 °C in air, an inorganic phase is left as the residue. Various suspected confinement effects are discussed. The infiltration of inorganic materials is reduced in deeper layers of the cavity-grown polymer and is dependent on the cavity geometry. The structure of the inorganic deposition after calcination varies from scattered particles and their aggregates to cavity-capping films or cavity-filling low-density porous deposition, and the inorganic deposition is often anisotropically cracked. A large part of the infiltration is achieved already during the short-pulse experiments with a commercial ALD reactor. Furthermore, the infiltrated polymer is more resistant to dissolution in acetone whereas the inorganic component can still be heavily affected by phosphoric acid.

8.
J Phys Chem B ; 126(31): 5920-5930, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35920864

RESUMO

Vapor-phase infiltration, a postpolymerization modification process, has demonstrated the ability to create organic-inorganic hybrid membranes with excellent stability in organic solvents while maintaining critical membrane properties of high permeability and selectivity. However, the chemical reaction pathways that occur during VPI and their implications on the hybrid membrane stability are poorly understood. This paper combines in situ quartz crystal microbalance gravimetry (QCM) and ex situ chemical characterization with first-principles simulations at the atomic scale to study each processing step in the infiltration of polymer of intrinsic microporosity 1 (PIM-1) with trimethylaluminum (TMA) and its co-reaction with water vapor. Building upon results from in situ QCM experiments and SEM/EDX, which find TMA remains within PIM-1 even under long desorption times, density functional theory (DFT) simulations identify that an energetically stable coordination forms between the metal-organic precursor and PIM-1's nitrile functional group during the precursor exposure step of VPI. In the subsequent water vapor exposure step, the system undergoes a series of exothermic reactions to form the final hybrid membrane. DFT simulations indicate that these reaction pathways result in aluminum oxyhydroxide species consistent with ex situ XPS and FTIR characterization. Both NMR and DFT simulations suggest that the final aluminum structure is primarily 6-fold coordinated and that the aluminum is at least dimerized, if not further "polymerized". According to the simulations, coordination of the aluminum with at least one nitrile group from the PIM-1 appears to weaken significantly as the final inorganic structure emerges but remains present to enable the formation of the 6-fold coordination species. Water molecules are proposed to complete the coordination complex without further increasing the aluminum's oxidation state. This study provides new insights into the infiltration process and the chemical structure of the final hybrid membrane including support for the possible mechanism of solvent stability.


Assuntos
Alumínio , Polímeros , Alumínio/química , Gases , Nitrilas , Polímeros/química , Técnicas de Microbalança de Cristal de Quartzo , Solventes , Vapor
9.
Dalton Trans ; 51(1): 303-311, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34897332

RESUMO

An in situ pulsed heating atomic layer deposition (PH-ALD) technique is used to grow heteroepitaxial ZnO thin films on c-plane sapphire with temperature-sensitive metalorganic precursors. During metalorganic precursor delivery, the substrate is maintained at a base temperature of 110 °C to prevent thermal decomposition of the precursors. After the substrate is sequentially exposed to the metalorganic precursor and water co-reactant at this low temperature, a high-power resistive heater is used to rapidly heat the substrate to between 400 and 900 °C to drive film crystallization. These in situ heat pulses enable epitaxial growth of (0001) ZnO films on c-plane sapphire. Rocking curves with FWHM of values as low as 0.53° are achieved. In contrast, films deposited entirely at 110 °C appear random polycrystalline and post-deposition annealing to 900 °C achieves only partial "epitaxial character" with a notably different in-plane orientation. Variations in heat pulse temperature and the number of deposition cycles between heat pulses are explored. Epitaxial growth persists up to 5 deposition cycles per heat pulse, with the 2θ-ω FWHM increasing to 1-2°. To further reduce process times, a templating approach is also explored in which a limited number of "template" layers are initially deposited with PH-ALD followed by low-temperature ALD at 110 °C. Epitaxial growth is encouraged with as few as 5 cycles of PH-ALD followed by 495 cycles of low-temperature ALD. Crystal quality further improves by using up to 50 template cycles, with a 2θ-ω FWHM of 1.3°. Epilayers also show enhanced photoluminescence (PL) at room temperature. These results demonstrate how in situ pulse-heating can be used to promote epitaxial film growth in ALD processes using temperature-sensitive metalorganic precursors.

10.
Langmuir ; 37(49): 14509-14519, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34851123

RESUMO

Amorphous aluminum oxide (alumina) thin films are of interest as inert chemical barriers for various applications. However, the existing literature on the aqueous stability of atomic layer deposited (ALD) amorphous alumina thin films remains incomplete and, in some cases, inconsistent. Because these films have a metastable amorphous structure─which is likely partially hydrated in the as-deposited state─hydration and degradation behavior likely deviate from what is expected for the equilibrium, crystalline Al2O3 phase. Deposition conditions and the aqueous solution composition (ion content) appear to influence the reactivity and stability of amorphous ALD alumina films, but a full understanding of why these alumina films hydrate, solvate, and/or dissolve in near-neutral pH = 7 conditions, for which crystalline Al2O3 is expected to be stable, remains unsolved. In this work, we conduct an extensive X-ray photoelectron spectroscopy investigation of the surface chemistry as a function of water immersion time to reveal the formation of oxyhydroxide (AlOOH), hydroxide (Al(OH)3), and possible carbonate species. We further show that brief postdeposition exposures of these ALD alumina films to an air plasma anneal can significantly enhance the film's stability in near-neutral pH aqueous conditions. The simplicity and effectiveness of this plasma treatment may provide a new alternative to thermal annealing and capping treatments typically used to promote aqueous stability of low-temperature ALD metal oxide barrier layers.

11.
Nat Mater ; 20(10): 1414-1421, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34017120

RESUMO

Charge transport in semiconducting polymers ranges from localized (hopping-like) to delocalized (metal-like), yet no quantitative model exists to fully capture this transport spectrum and its dependency on charge carrier density. In this study, using an archetypal polymer-dopant system, we measure the temperature-dependent electrical conductivity, Seebeck coefficient and extent of oxidation. We then use these measurements to develop a semi-localized transport (SLoT) model, which captures both localized and delocalized transport contributions. By applying the SLoT model to published data, we demonstrate its broad utility. We are able to determine system-dependent parameters such as the maximum localization energy of the system, how this localization energy changes with doping, the amount of dopant required to achieve metal-like conductivity and the conductivity a system could have in the absence of localization effects. This proposed SLoT model improves our ability to predict and tailor electronic properties of doped semiconducting polymers.

12.
ACS Appl Mater Interfaces ; 13(11): 13802-13812, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33709685

RESUMO

Cellulosic materials are widely used in daily life for paper products and clothing as well as for emerging applications in sustainable packaging and inexpensive medical diagnostics. Cellulose has a high density of hydroxyl groups that create strong intra- and interfiber hydrogen bonding. These abundant hydroxyl groups also make cellulose superhydrophilic. Schemes for hydrophobization and spatially selective hydrophobization of cellulosic materials can expand the application space for cellulose. Cellulose is often hydrophobized through wet chemistry surface modification methods. This work reports a new modification method using a combination of atomic layer deposition (ALD) and atmospheric heating to alter the wettability of purely cellulosic chromatography paper. We find that once the cellulosic paper is coated with a single ALD cycle (1cy-ALD) of Al2O3, it can be made sticky superhydrophobic after a 150 °C ambient post-ALD heating step. An X-ray photoelectron spectroscopy investigation reveals that the ALD-modified cellulosic surface becomes more susceptible to adsorption of adventitious carbon upon heating than an untreated cellulosic surface. This conclusion is further supported by the ability to use alternating air plasma and heat treatments to reversibly transition between the hydrophilic and hydrophobic states. We attribute the apparent abruptness of this wetting transition to a Cassie-Wenzel-like phenomenon, which is also consistent with the sticky hydrophobic wetting behavior. Using scanning probe methods, we show that the surfaces have roughness at multiple length scales. Using a Cassie-Wenzel model, we show how a small change in the surface's Young's contact angle-upon adsorption of adventitious carbon-can lead to an abrupt increase in hydrophobicity for surfaces with such roughnesses. Finally, we demonstrate the ability to spatially pattern the wettability on these 1cy-ALD-treated cellulosic papers via selective heating. This ALD-treated hydrophobic paper also shows promise for microliter droplet manipulation and patterned lab-on-paper devices.

13.
ACS Nano ; 14(7): 7999-8011, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32644796

RESUMO

Poly(vinyl alcohol-co-ethylene) (EVOH) nanofibrous aerogel (NFA) templates were fabricated through vacuum freeze-drying from EVOH nanofibrous suspensions. Aluminum oxide (Al2O3) layers were deposited onto highly porous templates to form organic-inorganic hybrid aerogels by the atomic layer deposition (ALD) technique. Chemical and physical measurements showed that mechanical properties were improved through ALD. In addition, the surface chemistry of ALD modified aerogels showed a fascinating cyclic change based on the number of ALD deposition cycles. A transition from hydrophilicity to hydrophobicity was observed after a few cycles of ALD coating; however, additional deposition cycles changed the wettability characteristics back to hydrophilicity. This hydrophilic-hydrophobic-hydrophilic variation is shown to be governed by a combination of geometrical and chemical surface properties. Furthermore, the deposited Al2O3 could substantially improve aerogels strength and reduce permanent deformation after cyclic compression. The Young's modulus of aerogels increased from 5.54 to 33.27 kPa, and the maximum stress at 80% strain went up from 31.13 to 176.11 kPa, after 100 cycles of trimethyl-aluminum (TMA)/water ALD. Thermogravimetric analysis (TGA) results confirm that ALD can effectively improve the heat resistance characteristics of polymeric aerogel. The onset temperature and the residual mass increased with increasing numbers of ALD cycles. During pyrolysis, the nanofiber cores were decomposed, and the brittle pure Al2O3 self-supporting nanotube aerogels with the continuous hollow nanotubular network were formed. A coating of continuous thickness Al2O3 layer on individual nanofiber was achieved after 100 ALD cycles. In additional to mechanical strength and physical property changes, the ALD modified aerogel also shows a superhydrophobic and oleophilic surface chemistry, which could potentially be used to remove oils/organic solvents from water. The resultant aerogels exhibit excellent absorption capacity (31-73 g/g) for various liquids, and the material could be reused after distillation or squeezing. A successful scale-up of such materials could provide some insights into the design and development of thermoplastic polymeric NFAs with substantial industrial applications.

14.
Langmuir ; 36(7): 1633-1641, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32052971

RESUMO

Wood is a universal building material. While highly versatile, many of its critical properties vary with water content (e.g., dimensionality, mechanical strength, and thermal insulation). Treatments to control the water content in wood have many technological applications. This study investigates the use of single-cycle atomic layer deposition (1cy-ALD) to apply <1 nm Al2O3, ZnO, or TiO2 coatings to various bulk lumber species (pine, cedar, and poplar) to alter their wettability, fungicidal, and thermal transport properties. Because the 1cy-ALD process only requires a single exposure to the precursors, it is potentially scalable for commodity product manufacturing. While all ALD chemistries are found to make the wood's surface hydrophobic, wood treated with TiO2 (TiCl4 + H2O) shows the greatest bulk water repellency upon full immersion in water. In situ monitoring of the chamber reaction pressure suggests that the TiCl4 + H2O chemistry follows reaction-rate-limited processing kinetics that enables deeper diffusion of the precursors into the wood's fibrous structure. Consequently, in humid or moist environments, 1cy-ALD (TiCl4 + H2O) treated lumber shows a 4 times smaller increase in thermal conductivity and improved resistance to mold growth compared to untreated lumber.

15.
Nanoscale Adv ; 2(1): 356-367, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36134005

RESUMO

Nanocellulosic films (nanopapers) are of interest for packaging, printing, chemical diagnostics, flexible electronics and separation membranes. These nanopaper products often require chemical modification to enhance functionality. Most chemical modification is achieved via wet chemistry methods that can be tedious and energy intensive due to post-processing drying. Here, we discuss the use of atomic layer deposition (ALD), a vapor phase modification technique, to quickly and simply make nanopaper hydrophobic and enhance its wet strength and durability. Specifically, we find that just "a few" ALD cycles (≤10) of either aluminum oxide or titanium oxide is sufficient to significantly increase the durability of cellulose nanofibril (CNF) paper in aqueous media, even under aggressive sonication conditions. Keeping the number of ALD cycles low makes the process more scalable for commodity manufacturing. We investigate whether this increase in wet strength is due to enhanced hydrophobic attractions or stronger hydrogen bonding between CNF fibers. The current evidence suggests that the latter mechanism is likely dominant, with ab initio calculations suggesting that newly created M-OH terminations on the cellulose nanofibrils increase hydrogen bond strength between fibers and impede CNF hydration and dispersion. ALD treated nanopapers are also found to preferentially transport hexane over water, suggesting their potential use in oil/water demulsification devices.

16.
Nat Mater ; 18(1): 3-4, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30455450
17.
Phys Chem Chem Phys ; 20(33): 21506-21514, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30091762

RESUMO

Vapor phase infiltration (VPI) is a new approach for transforming polymers into organic-inorganic hybrid materials with unique properties. Here, we combine experimental measurements with phenomenological theory to develop a universal strategy for measuring, modeling, and predicting the processing kinetics of VPI. We apply our approach to the well-studied VPI system of trimethylaluminum (TMA) infiltrating poly(methyl methacrylate) (PMMA) because the system undergoes both precursor-polymer diffusion and reaction. By experimentally measuring aluminum concentration profiles as a function of film depth with secondary ion mass spectrometry (SIMS) and film swelling with ellipsometry, we have extracted equilibrium solubility and effective diffusivity as a function of process temperature. Fitting these values to appropriate Van't Hoff and Arrhenius relationships, we can then extract enthalpies for precursor sorption and diffusion. We observe an abrupt mechanistic change in both the sorption and diffusion processes around 95 °C, where greater chain mobility at higher processing temperatures lead to greater reactivity between TMA and PMMA. With new understanding of this VPI process, we demonstrate precise control of inorganic infiltration depth and loading fraction into PMMA.

18.
ACS Appl Mater Interfaces ; 10(9): 7709-7716, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29433308

RESUMO

Textiles, especially those worn by patients and medical professionals, serve as vectors for proliferating pathogens. Upstream manufacturing techniques and end-user practices, such as transition-metal embedment in textile fibers or alcohol-based disinfectants, can mitigate pathogen growth, but both techniques have their shortcomings. Fiber embedment requires complete replacement of all fabrics in a facility, and the effects of embedded nanoparticles on human health remain unknown. Alcohol-based, end-user disinfectants are short-lived because they quickly volatilize. In this work, common zinc salts are explored as an end-user residual antimicrobial agent. Zinc salts show cost-effective and long-lasting antimicrobial efficacy when solution-deposited on common textiles, such as nylon, polyester, and cotton. Unlike common alcohol-based disinfectants, these zinc salt-treated textiles mitigate microbial growth for more than 30 days and withstand commercial drying. Polyester fabrics treated with ZnO and ZnCl2 were further explored because of their commercial ubiquity and likelihood for rapid commercialization. ZnCl2-treated textiles were found to retain their antimicrobial coating through abrasive testing, whereas ZnO-treated textiles did not. Scanning electron microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry analyses suggest that ZnCl2 likely hydrolyzes and reacts with portions of the polyester fiber, chemically attaching to the fiber, whereas colloidal ZnO simply sediments and binds with weaker physical interactions.


Assuntos
Antibacterianos/química , Fibra de Algodão , Têxteis , Compostos de Zinco
19.
ACS Appl Mater Interfaces ; 9(40): 35048-35056, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28929745

RESUMO

Fast and earth-abundant-element polyoxometalates (POMs) have been heavily studied recently as water oxidation catalysts (WOCs) in homogeneous solution. However, POM WOCs can be quite unstable when supported on electrode or photoelectrode surfaces under applied potential. This article reports for the first time that a nanoscale oxide coating (Al2O3) applied by the atomic layer deposition (ALD) aids immobilization and greatly stabilizes this now large family of molecular WOCs when on electrode surfaces. In this study, [{RuIV4(OH)2(H2O)4}(γ-SiW10O34)2]10- (Ru4Si2) is supported on hematite photoelectrodes and then protected by ALD Al2O3; this ternary system was characterized before and after photoelectrocatalytic water oxidation by Fourier transform infrared, X-ray photoelectron spectroscopy, energy-dispersive X-ray, and voltammetry. All these studies indicate that Ru4Si2 remains intact with Al2O3 ALD protection, but not without. The thickness of the Al2O3 layer significantly affects the catalytic performance of the system: a 4 nm thick Al2O3 layer provides optimal performance with nearly 100% faradaic efficiency for oxygen generation under visible-light illumination. Al2O3 layers thicker than 6.5 nm appear to completely bury the Ru4Si2 catalyst, removing all of the catalytic activity, whereas thinner layers are insufficient to maintain a long-term attachment of the catalytic POM.

20.
ACS Appl Mater Interfaces ; 8(14): 9514-22, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26999431

RESUMO

Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...