Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiology ; 295(3): 593-605, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32208096

RESUMO

Background Awareness of energy efficiency has been rising in the industrial and residential sectors but only recently in the health care sector. Purpose To measure the energy consumption of modern CT and MRI scanners in a university hospital radiology department and to estimate energy- and cost-saving potential during clinical operation. Materials and Methods Three CT scanners, four MRI scanners, and cooling systems were equipped with kilowatt-hour energy measurement sensors (2-Hz sampling rate). Energy measurements, the scanners' log files, and the radiology information system from the entire year 2015 were analyzed and segmented into scan modes, as follows: net scan (actual imaging), active (room time), idle, and system-on and system-off states (no standby mode was available). Per-examination and peak energy consumption were calculated. Results The aggregated energy consumption imaging 40 276 patients amounted to 614 825 kWh, dedicated cooling systems to 492 624 kWh, representing 44.5% of the combined consumption of 1 107 450 kWh (at a cost of U.S. $199 341). This is equivalent to the usage in a town of 852 people and constituted 4.0% of the total yearly energy consumption at the authors' hospital. Mean consumption per CT examination over 1 year was 1.2 kWh, with a mean energy cost (±standard deviation) of $0.22 ± 0.13. The total energy consumption of one CT scanner for 1 year was 26 226 kWh ($4721 in energy cost). The net consumption per CT examination over 1 year was 3580 kWh, which is comparable to the usage of a two-person household in Switzerland; however, idle state consumption was fourfold that of net consumption (14 289 kWh). Mean MRI consumption over 1 year was 19.9 kWh per examination, with a mean energy cost of $3.57 ± 0.96. The mean consumption for a year in the system-on state was 82 174 kWh per MRI examination and 134 037 kWh for total consumption, for an energy cost of $24 127. Conclusion CT and MRI energy consumption is substantial. Considerable energy- and cost-saving potential is present during nonproductive idle and system-off modes, and this realization could decrease total cost of ownership while increasing energy efficiency. © RSNA, 2020.


Assuntos
Conservação de Recursos Energéticos/economia , Redução de Custos/economia , Imageamento por Ressonância Magnética/economia , Radiologia/economia , Tomografia Computadorizada por Raios X/economia , Alemanha , Humanos , Sistemas de Informação em Radiologia , Suíça
2.
Dev Genes Evol ; 222(3): 125-38, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22460819

RESUMO

The central complex of the grasshopper (Schistocerca gregaria) brain comprises a modular set of neuropils, which develops after mid-embryogenesis and is functional on hatching. Early in embryogenesis, Repo-positive glia cells are found intermingled among the commissures of the midbrain, but then redistribute as central complex modules become established and, by the end of embryogenesis, envelop all midbrain neuropils. The predominant glia associated with the central body during embryogenesis are glutamine synthetase-/Repo-positive astrocyte-like glia, which direct extensive processes (gliopodia) into and around midbrain neuropils. We used intracellular dye injection in brain slices to ascertain whether such glia are dye-coupled into a communicating cellular network during embryogenesis. Intracellular staining of individual cells located at any one of four sites around the central body revealed a population of dye-coupled cells whose number and spatial distribution were stereotypic for each site and comparable at both 70 and 100% of embryogenesis. Subsequent immunolabeling confirmed these dye-coupled cells to be astrocyte-like glia. The addition of n-heptanol to the bathing saline prevented all dye coupling, consistent with gap junctions linking the glia surrounding the central body. Since dye coupling also occurred in the absence of direct intersomal contacts, it might additionally involve the extensive array of gliopodia, which develop after glia are arrayed around the central body. Collating the data from all injection sites suggests that the developing central body is surrounded by a network of dye-coupled glia, which we speculate may function as a positioning system for the developing neuropils of the central complex.


Assuntos
Junções Comunicantes/metabolismo , Gafanhotos/citologia , Gafanhotos/embriologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Gafanhotos/metabolismo , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurópilo/citologia , Neurópilo/metabolismo , Coloração e Rotulagem
3.
Dev Genes Evol ; 221(3): 141-55, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21556852

RESUMO

In this study we employed the expression of the astrocyte-specific enzyme glutamine synthetase, in addition to the glia-specific marker Repo, to characterize glia cell types associated with the embryonic development of the central complex in the grasshopper Schistocerca gregaria. Double labeling experiments reveal that all glutamine synthetase-positive cells associated with the central complex are also Repo-positive and horseradish peroxidase-negative, confirming they are glia. Early in embryogenesis, prior to development of the central complex, glia form a continuous population extending from the pars intercerebralis into the region of the commissural fascicles. Subsequently, these glia redisperse to envelop each of the modules of the central complex. No glial somata are found within the central complex neuropils themselves. Since glutamine synthetase is expressed cortically in glia, it allows their processes as well as their soma locations to be visualized. Single cell reconstructions reveal one population of glia as directing extensive ensheathing processes around central complex neuropils such as the central body, while another population projects columnar-like arborizations within the central body. Such arborizations are only seen in central complex modules after their neuroarchitecture has been established suggesting that the glial arborizations project onto a prior scaffold of neurons or tracheae.


Assuntos
Encéfalo/embriologia , Gafanhotos/embriologia , Mesencéfalo/embriologia , Neuroglia/citologia , Animais , Astrócitos , Biomarcadores/metabolismo , Encéfalo/citologia , Linhagem da Célula , Embrião não Mamífero , Glutamato-Amônia Ligase/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/metabolismo , Mesencéfalo/citologia , Neuroglia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...