Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 10(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068119

RESUMO

Cutaneous leishmaniasis (CL) is the most common disease form caused by a Leishmania parasite infection and considered a neglected tropical disease (NTD), affecting 700,000 to 1.2 million new cases per year in the world. Leishmania major is one of several different species of the Leishmania genus that can cause CL. Current CL treatments are limited by adverse effects and rising resistance. Studying disease metabolism at the site of infection can provide knowledge of new targets for host-targeted drug development. In this study, tissue samples were collected from mice infected in the ear or footpad with L. major and analyzed by untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS). Significant differences in overall metabolite profiles were noted in the ear at the site of the lesion. Interestingly, lesion-adjacent, macroscopically healthy sites also showed alterations in specific metabolites, including selected glycerophosphocholines (PCs). Host-derived PCs in the lower m/z range (m/z 200-799) showed an increase with infection in the ear at the lesion site, while those in the higher m/z range (m/z 800-899) were decreased with infection at the lesion site. Overall, our results expanded our understanding of the mechanisms of CL pathogenesis through host metabolism and may lead to new curative measures against infection with Leishmania.

2.
PLoS Negl Trop Dis ; 11(12): e0006132, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29281643

RESUMO

BACKGROUND: Chagas disease, caused by the protozoan Trypanosoma cruzi, is the leading cause of heart failure in Latin America. The clinical treatment of Chagas disease is limited to two 60 year-old drugs, nifurtimox and benznidazole, that have variable efficacy against different strains of the parasite and may lead to severe side effects. CYP51 is an enzyme in the sterol biosynthesis pathway that has been exploited for the development of therapeutics for fungal and parasitic infections. In a target-based drug discovery program guided by x-ray crystallography, we identified the 4-aminopyridyl-based series of CYP51 inhibitors as being efficacious versus T.cruzi in vitro; two of the most potent leads, 9 and 12, have now been evaluated for toxicity and efficacy in mice. METHODOLOGY/PRINCIPAL FINDINGS: Both acute and chronic animal models infected with wild type or transgenic T. cruzi strains were evaluated. There was no evidence of toxicity in the 28-day dosing study of uninfected animals, as judged by the monitoring of multiple serum and histological parameters. In two acute models of Chagas disease, 9 and 12 drastically reduced parasitemia, increased survival of mice, and prevented liver and heart injury. None of the compounds produced long term sterile cure. In the less severe acute model using the transgenic CL-Brenner strain of T.cruzi, parasitemia relapsed upon drug withdrawal. In the chronic model, parasitemia fell to a background level and, as evidenced by the bioluminescence detection of T. cruzi expressing the red-shifted luciferase marker, mice remained negative for 4 weeks after drug withdrawal. Two immunosuppression cycles with cyclophosphamide were required to re-activate the parasites. Although no sterile cure was achieved, the suppression of parasitemia in acutely infected mice resulted in drastically reduced inflammation in the heart. CONCLUSIONS/SIGNIFICANCE: The positive outcomes achieved in the absence of sterile cure suggest that the target product profile in anti-Chagasic drug discovery should be revised in favor of safe re-administration of the medication during the lifespan of a Chagas disease patient. A medication that reduces parasite burden may halt or slow progression of cardiomyopathy and therefore improve both life expectancy and quality of life.


Assuntos
Inibidores de 14-alfa Desmetilase/uso terapêutico , Doença de Chagas/tratamento farmacológico , Parasitemia/tratamento farmacológico , Pirimidinas/uso terapêutico , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Inibidores de 14-alfa Desmetilase/efeitos adversos , Animais , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Descoberta de Drogas , Feminino , Coração/efeitos dos fármacos , Chumbo/química , Chumbo/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miocárdio/patologia , Parasitemia/parasitologia , Pirimidinas/efeitos adversos , Esterol 14-Desmetilase/metabolismo , Esteróis/biossíntese , Tripanossomicidas/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...