Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 51: 148-160, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28069495

RESUMO

The concept of macromers allows for a broad adjustment of biomaterial properties by macromer chemistry or copolymerization. Copolymerization strategies can also be used to introduce reactive sites for subsequent surface modification. Control over surface features enables adjustment of cellular reactions with regard to site and object of implantation. We designed macromer-derived polymer films which function as non-implantable analytical substrates for the investigation of surface properties of equally composed scaffolds for bone tissue engineering. To this end, a toolbox of nine different biodegradable, three-armed macromers was thermally cross-copolymerized with poly(ethylene glycol)-methacrylate (PEG-MA) to films. Subsequent activation of PEG-hydroxyl groups with succinic anhydride and N-hydroxysuccinimid allowed for covalent surface modification. We quantified the capacity to immobilize analytes of low (amino-functionalized fluorescent dye, Fcad, and RGD-peptides) and high (alkaline phosphatase, ALP) molecular weight. Fcad grafting level was controlled by macromer chemistry, content and molecular weight of PEG-MA, but also the solvent used for film synthesis. Fcad molar amount per surface area was twentyfive times higher on high-swelling compared to low-swelling films, but differences became smaller when large ALP (appr. 2:1) were employed. Similarly, small differences were observed on RGD peptide functionalized films that were investigated by cell adhesion studies. Presentation of PEG-derivatives on surfaces was visualized by atomic force microscopy (AFM) which unraveled composition-dependent domain formation influencing fluorescent dye immobilization. Surface wetting characteristics were investigated via static water contact angle. We conclude that macromer ethoxylation and lactic acid content determined film swelling, PEG domain formation and eventually efficiency of surface decoration. STATEMENT OF SIGNIFICANCE: Surfaces of implantable biomaterials are the site of interaction with a host tissue. Accordingly, modifications in the composition of the surface will determine cellular response towards the material which is crucial for the success of innovations and control of tissue regeneration. We employed a macromer approach which is most flexible for the design of biomaterials with a broad spectrum of physicochemical characteristics. For ideal analytical accessibility of the material platform, we cross-copolymerized films on solid supports. Films allowed for the covalent immobilization of fluorescent labels, peptides and enzymes and thorough analytical characterization revealed that macromer hydrophilicity is the most relevant design parameter for surface analyte presentation in these materials. All analytical results were combined in a model describing PEG linker domain formation and ligand presentation.


Assuntos
Materiais Biocompatíveis/farmacologia , Polimerização , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Tecido Adiposo/citologia , Animais , Materiais Biocompatíveis/química , Bovinos , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Enzimas Imobilizadas/metabolismo , Corantes Fluorescentes/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos , Microscopia de Força Atômica , Oligopeptídeos/farmacologia , Polietilenoglicóis , Polímeros/química , Solventes/química , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Propriedades de Superfície
2.
Acta Biomater ; 26: 82-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26277378

RESUMO

Biocompatible material platforms with adjustable properties and option for chemical modification are warranted for site-specific biomedical applications. To this end, three-armed biodegradable macromers of well-defined chemical characteristics were prepared from trivalent alcohols with different degrees of ethoxylation and different lengths of oligoester domains. A platform of 15 different macromers was established. The macromers were designed to exhibit different hydrophilicities and molecular weights and contained various types of oligoesters such as d,l-lactide, l-lactide and ε-caprolactone. Macromers chemical composition was determined and molecular weights ranged from 900 to 3000 Da. Thermally induced cross-linking of methacrylated macromers was monitored by oscillation rheology. A novel variant of the solid lipid templating technique was established to fabricate macroporous tissue engineering scaffolds from these macromers. Scaffold properties were thoroughly investigated regarding mechanical properties, compositional analysis including methacrylic double bond conversion, microstructure and porosity. Material properties could be controlled by macromer chemistry. By variation of the fabrication procedure and processing parameters scaffold porosity was increased up to 88%. Basic cytocompatibility was assessed including indirect and direct contact methods. The established macromers hold promise for various biomedical purposes. STATEMENT OF SIGNIFICANCE: Specific biomedical applications require tailored biomaterials with defined properties. We established a macromer platform for preparation of tissue engineering scaffolds with adjustable chemical and mechanical characteristics. Macromers were composed of trivalent core alcohols with different degrees of ethoxylation to which biodegradable domains - lactide or ε-caprolactone - were oligomerized before final methacrylation. The solid lipid templating technique was adapted to fabricate macroporous scaffolds with controlled pore structure and porosity from the developed macromers, which can also be processed by solid freeform fabrication techniques. The material platform relies on clinically established chemistries of the biodegradable domains and the macromer concept enables the fabrication of networks in which cross-polymerization kinetics, mechanical properties and surface hydrophobicity is predefined by macromer chemistry. Cytocompatibility was confirmed by indirect and direct cell contact experiments.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/síntese química , Polímeros/síntese química , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Força Compressiva , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Estresse Mecânico , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...