Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Catena (Amst) ; 243: 108216, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39021895

RESUMO

The preservation and augmentation of soil organic carbon (SOC) stocks is critical to designing climate change mitigation strategies and alleviating global warming. However, due to the susceptibility of SOC stocks to environmental and topo-climatic variability and changes, it is essential to obtain a comprehensive understanding of the state of current SOC stocks both spatially and vertically. Consequently, to effectively assess SOC storage and sequestration capacity, precise evaluations at multiple soil depths are required. Hence, this study implemented an advanced Deep Neural Network (DNN) model incorporating Sentinel-1 Synthetic Aperture Radar (SAR) data, topo-climatic features, and soil physical properties to predict SOC stocks at multiple depths (0-30cm, 30-60cm, 60-100cm, and 100-200cm) across diverse land-use categories in the KwaZulu-Natal province, South Africa. There was a general decline in the accuracy of the DNN model's prediction with increasing soil depth, with the root mean square error (RMSE) ranging from 8.34 t/h to 11.97 t/h for the four depths. These findings imply that the link between environmental covariates and SOC stocks weakens with soil depth. Additionally, distinct factors driving SOC stocks were discovered in both topsoil and deep-soil, with vegetation having the strongest effect in topsoil, and topo-climate factors and soil physical properties becoming more important as depth increases. This underscores the importance of incorporating depth-related soil properties in SOC modelling. Grasslands had the largest SOC stocks, while commercial forests have the highest SOC sequestration rates per unit area. This study offers valuable insights to policymakers and provides a basis for devising regional management strategies that can be used to effectively mitigate climate change.

2.
Geoderma Reg ; 37: e00817, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39015345

RESUMO

Soil organic carbon (SOC) stocks are critical for land management strategies and climate change mitigation. However, understanding SOC distribution in South Africa's arid and semi-arid regions remains a challenge due to data limitations, and the complex spatial and sub-surface variability in SOC stocks driven by desertification and land degradation. Thus, to support soil and land-use management practices as well as advance climate change mitigation efforts, there is an urgent need to provide more precise SOC stock estimates within South Africa's arid and semi-arid regions. Hence, this study adopted remote-sensing approaches to determine the spatial sub-surface distribution of SOC stocks and the influence of environmental co-variates at four soil depths (i.e., 0-30 cm, 30-60 cm, 60-100 cm, and 100-200 cm). Using two regression-based algorithms, i.e., Extreme Gradient Boosting (XGBoost) and Random Forest (RF), the study found the former (RMSE values ranging from 7.12 t/ha to 29.55 t/ha) to be a superior predictor of SOC in comparison to the latter (RMSE values ranging from 7.36 t/ha to 31.10 t/ha). Nonetheless, both models achieved satisfactory accuracy (R2 ≥ 0.52) for regional-scale SOC predictions at the studied soil depths. Thereafter, using a variable importance analysis, the study demonstrated the influence of climatic variables like rainfall and temperature on SOC stocks at different depths. Furthermore, the study revealed significant spatial variability in SOC stocks, and an increase in SOC stocks with soil depth. Overall, these findings enhance the understanding of SOC dynamics in South Africa's arid and semi-arid landscapes and emphasizes the importance of considering site specific topo-climatic characteristics for sustainable land management and climate change mitigation. Furthermore, the study offers valuable insights into sub-surface SOC distribution, crucial for informing carbon sequestration strategies, guiding land management practices, and informing environmental policies within arid and semi-arid environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...