Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Vaccines (Basel) ; 12(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543954

RESUMO

Currently, vaccine development against different respiratory diseases is at its peak. It is of utmost importance to find suitajble adjuvants that can increase the potency of the vaccine candidates. This study aimed to determine the systemic and splenic immune mechanisms in mice models induced by anionic and cationic lipid adjuvants in the presence of the vaccine-candidate influenza antigen hemagglutinin (HA). In the presence of the HA antigen, the cationic adjuvant (N3) increased conventional dendritic cell 1 (cDC1) abundance with enhanced MHCI and CD80-CD86 costimulatory marker expression, and significantly higher CD8T and Th17 populations with enhanced interferon-gamma (IFNγ) expression in CD8T and CD4T populations. Conversely, the anionic adjuvant (L3) increased the cDC2 population percentage with significantly higher MHCII and DEC205 expression, along with an increase in the CD4T and regulatory T cell populations. The L3-treated group also exhibited higher percentages of activated B and plasma cell populations with significantly higher antigen-specific IgG and IgA titer and virus neutralization potential. While the anionic adjuvant induced significantly higher humoral responses than the cationic adjuvant, the latter influenced a significantly higher Th1/Th17 response. For customized vaccine development, it is beneficial to have alternative adjuvants that can generate differential immune responses with the same vaccine candidate antigen. This study will aid the selection of adjuvants based on their charges to improve specific immune response arms in the future development of vaccine formulation.

3.
Methods Cell Biol ; 182: 247-263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359981

RESUMO

The correct repair of DNA Double Strand Breaks (DSBs) is fundamental to prevent the loss of genetic information, mutations, and chromosome rearrangements. An emerging determinant of DNA repair is chromatin mobility. However, how chromatin mobility can influence DSBs repair is still poorly understood. While increased mobility is generally associated with the correct repair by Homologous Recombination (HR) of DSBs generated in heterochromatin, it promotes the mis-repair of multiple distal DSBs by Non-Homologous End Joining (NHEJ). Here we describe a method for detecting and quantifying DSBs mobility by live-cell imaging in the context of multiple DSBs prone to mis-repair by NHEJ. In addition, we discuss a set of parameters that can be used for quantitative and qualitative analysis of nuclear deformations and to discard nuclei where the deformation could affect the analysis of DSBs mobility. While this method is based on the visualization of DSBs with the mCherry-53BP1-2 fusion protein, we believe that it can also be used to analyze the mobility of nuclear foci formed by different fluorescent proteins.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Reparo do DNA/genética , Cromatina/genética , Rearranjo Gênico
4.
Nucleic Acids Res ; 52(8): 4313-4327, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38407308

RESUMO

The complex formed by Ku70/80 and DNA-PKcs (DNA-PK) promotes the synapsis and the joining of double strand breaks (DSBs) during canonical non-homologous end joining (c-NHEJ). In c-NHEJ during V(D)J recombination, DNA-PK promotes the processing of the ends and the opening of the DNA hairpins by recruiting and/or activating the nuclease Artemis/DCLRE1C/SNM1C. Paradoxically, DNA-PK is also required to prevent the fusions of newly replicated leading-end telomeres. Here, we describe the role for DNA-PK in controlling Apollo/DCLRE1B/SNM1B, the nuclease that resects leading-end telomeres. We show that the telomeric function of Apollo requires DNA-PKcs's kinase activity and the binding of Apollo to DNA-PK. Furthermore, AlphaFold-Multimer predicts that Apollo's nuclease domain has extensive additional interactions with DNA-PKcs, and comparison to the cryo-EM structure of Artemis bound to DNA-PK phosphorylated on the ABCDE/Thr2609 cluster suggests that DNA-PK can similarly grant Apollo access to the DNA end. In agreement, the telomeric function of DNA-PK requires the ABCDE/Thr2609 cluster. These data reveal that resection of leading-end telomeres is regulated by DNA-PK through its binding to Apollo and its (auto)phosphorylation-dependent positioning of Apollo at the DNA end, analogous but not identical to DNA-PK dependent regulation of Artemis at hairpins.


Assuntos
Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA , Endonucleases , Telômero , Proteína Quinase Ativada por DNA/metabolismo , Proteína Quinase Ativada por DNA/genética , Telômero/metabolismo , Telômero/genética , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/metabolismo , Endonucleases/genética , Reparo do DNA por Junção de Extremidades , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Ligação Proteica , Quebras de DNA de Cadeia Dupla , Fosforilação , DNA/metabolismo , DNA/química , DNA/genética
5.
Nat Struct Mol Biol ; 30(9): 1346-1356, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653239

RESUMO

Telomeres replicated by leading-strand synthesis lack the 3' overhang required for telomere protection. Surprisingly, resection of these blunt telomeres is initiated by the telomere-specific 5' exonuclease Apollo rather than the Mre11-Rad50-Nbs1 (MRN) complex, the nuclease that acts at DNA breaks. Without Apollo, leading-end telomeres undergo fusion, which, as demonstrated here, is mediated by alternative end joining. Here, we show that DNA-PK and TRF2 coordinate the repression of MRN at blunt mouse telomeres. DNA-PK represses an MRN-dependent long-range resection, while the endonuclease activity of MRN-CtIP, which could cleave DNA-PK off of blunt telomere ends, is inhibited in vitro and in vivo by the iDDR of TRF2. AlphaFold-Multimer predicts a conserved association of the iDDR with Rad50, potentially interfering with CtIP binding and MRN endonuclease activation. We propose that repression of MRN-mediated resection is a conserved aspect of telomere maintenance and represents an ancient feature of DNA-PK and the iDDR.


Assuntos
Quebras de DNA , Proteína Quinase Ativada por DNA , Animais , Camundongos , Endonucleases , Telômero , DNA
6.
Hum Mol Genet ; 32(19): 2901-2912, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37440454

RESUMO

Telomere biology disorders (TBDs) are characterized by short telomeres, premature aging, bone marrow failure and cancer predisposition. Germline mutations in NHP2, encoding for one component of the telomerase cofactor H/ACA RNA binding complex together with Dyskerin, NOP10 and GAR1, have been previously reported in rare cases of TBDs. Here, we report two novel NHP2 variants (NHP2-A39T and NHP2-T44M) identified in a compound heterozygous patient affected by premature aging, bone marrow failure/myelodysplastic syndrome and gastric cancer. Although still able to support cell viability, both variants reduce the levels of hTR, the telomerase RNA component, and telomerase activity, expanding the panel of NHP2 pathological variants. Furthermore, both variants fail to be incorporated in the H/ACA RNA binding complex when in competition with wild-type endogenous NHP2, and the lack of incorporation causes their drastic proteasomal degradation. By RoseTTAFold prediction followed by molecular dynamics simulations, we reveal a dramatic distortion of residues 33-41, which normally position on top of the NHP2 core, as the main defect of NHP2-A39T, and high flexibility and the misplacement of the N-terminal region (residues 1-24) in NHP2-T44M and, to a lower degree, in NHP2-A39T. Because deletion of amino acids 2-24 causes a reduction in NHP2 levels only in the presence of wild-type NHP2, while deletion of amino acids 2-38 completely disrupts NHP2 stability, we propose that the two variants are mis-incorporated into the H/ACA binding complex due to the altered dynamics of the first 23 amino acids and/or the distortion of the residues 25-41 loop.


Assuntos
Senilidade Prematura , Telomerase , Humanos , Telomerase/genética , Ribonucleoproteínas Nucleares Pequenas/genética , RNA/genética , RNA/metabolismo , Transtornos da Insuficiência da Medula Óssea , Estabilidade Proteica , Telômero/metabolismo , Proteínas Nucleares/genética
7.
Nature ; 560(7716): 112-116, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30022158

RESUMO

In DNA repair, the resection of double-strand breaks dictates the choice between homology-directed repair-which requires a 3' overhang-and classical non-homologous end joining, which can join unresected ends1,2. BRCA1-mutant cancers show minimal resection of double-strand breaks, which renders them deficient in homology-directed repair and sensitive to inhibitors of poly(ADP-ribose) polymerase 1 (PARP1)3-8. When BRCA1 is absent, the resection of double-strand breaks is thought to be prevented by 53BP1, RIF1 and the REV7-SHLD1-SHLD2-SHLD3 (shieldin) complex, and loss of these factors diminishes sensitivity to PARP1 inhibitors4,6-9. Here we address the mechanism by which 53BP1-RIF1-shieldin regulates the generation of recombinogenic 3' overhangs. We report that CTC1-STN1-TEN1 (CST)10, a complex similar to replication protein A that functions as an accessory factor of polymerase-α (Polα)-primase11, is a downstream effector in the 53BP1 pathway. CST interacts with shieldin and localizes with Polα to sites of DNA damage in a 53BP1- and shieldin-dependent manner. As with loss of 53BP1, RIF1 or shieldin, the depletion of CST leads to increased resection. In BRCA1-deficient cells, CST blocks RAD51 loading and promotes the efficacy of PARP1 inhibitors. In addition, Polα inhibition diminishes the effect of PARP1 inhibitors. These data suggest that CST-Polα-mediated fill-in helps to control the repair of double-strand breaks by 53BP1, RIF1 and shieldin.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Polimerase I/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Animais , Proteína BRCA1/deficiência , Linhagem Celular , DNA Primase/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Humanos , Camundongos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Reparo de DNA por Recombinação , Telômero/genética , Telômero/metabolismo
8.
Cell ; 163(4): 880-93, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26544937

RESUMO

Increased mobility of chromatin surrounding double-strand breaks (DSBs) has been noted in yeast and mammalian cells but the underlying mechanism and its contribution to DSB repair remain unclear. Here, we use a telomere-based system to track DNA damage foci with high resolution in living cells. We find that the greater mobility of damaged chromatin requires 53BP1, SUN1/2 in the linker of the nucleoskeleton, and cytoskeleton (LINC) complex and dynamic microtubules. The data further demonstrate that the excursions promote non-homologous end joining of dysfunctional telomeres and implicated Nesprin-4 and kinesins in telomere fusion. 53BP1/LINC/microtubule-dependent mobility is also evident at irradiation-induced DSBs and contributes to the mis-rejoining of drug-induced DSBs in BRCA1-deficient cells showing that DSB mobility can be detrimental in cells with numerous DSBs. In contrast, under physiological conditions where cells have only one or a few lesions, DSB mobility is proposed to prevent errors in DNA repair.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Microtúbulos/metabolismo , Animais , Proteínas de Transporte/metabolismo , Reparo do DNA por Junção de Extremidades , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Telômero , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
9.
Proc Natl Acad Sci U S A ; 110(6): 2146-51, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23345425

RESUMO

Tumor suppressor p53-binding protein 1 (53BP1) regulates the repair of dysfunctional telomeres lacking the shelterin protein TRF2 by promoting their mobility, their nonhomologous end-joining (NHEJ), and, as we show here, by blocking 5' resection by CtIP. We report that these functions of 53BP1 required its N-terminal ATM/ATR target sites and its association with H4K20diMe, but not the BRCT domain, the GAR domain, or the binding of 53BP1 to dynein. A mutant lacking the oligomerization domain (53BP1(oligo)) was only modestly impaired in promoting NHEJ of dysfunctional telomeres and showed no defect with regard to the repression of CtIP. This 53BP1(oligo) allele was previously found to be unable to support class switch recombination or to promote radial chromosome formation in PARP1 inhibitor-treated Brca1-deficient cells. The data therefore support two conclusions. First, the requirements for 53BP1 in mediating NHEJ at dysfunctional telomeres and in class switch recombination are not identical. Second, 53BP1-dependent repression of CtIP at double-strand breaks (DSBs) is unlikely to be sufficient for the generation of radial chromosomes in PARP1 inhibitor-treated Brca1-deficient cells.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas Cromossômicas não Histona/deficiência , Proteínas Cromossômicas não Histona/genética , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Multimerização Proteica , Telômero/genética , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/deficiência , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
10.
Science ; 339(6120): 700-4, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23306437

RESUMO

The choice between double-strand break (DSB) repair by either homology-directed repair (HDR) or nonhomologous end joining (NHEJ) is tightly regulated. Defects in this regulation can induce genome instability and cancer. 53BP1 is critical for the control of DSB repair, promoting NHEJ, and inhibiting the 5' end resection needed for HDR. Using dysfunctional telomeres and genome-wide DSBs, we identify Rif1 as the main factor used by 53BP1 to impair 5' end resection. Rif1 inhibits resection involving CtIP, BLM, and Exo1; limits accumulation of BRCA1/BARD1 complexes at sites of DNA damage; and defines one of the mechanisms by which 53BP1 causes chromosomal abnormalities in Brca1-deficient cells. These data establish Rif1 as an important contributor to the control of DSB repair by 53BP1.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Animais , Proteína BRCA1/metabolismo , Células Cultivadas , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Camundongos , Proteína de Replicação A/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
11.
Mol Cell Biol ; 27(9): 3266-81, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17339336

RESUMO

The highly conserved 14-3-3 proteins participate in many biological processes in different eukaryotes. The BMH1 and BMH2 genes encode the two functionally redundant Saccharomyces cerevisiae 14-3-3 isoforms. In this work we provide evidence that defective 14-3-3 functions not only impair the ability of yeast cells to sustain DNA replication in the presence of sublethal concentrations of methyl methanesulfonate (MMS) or hydroxyurea (HU) but also cause S-phase checkpoint hyperactivation. Inactivation of the catalytic subunit of the histone acetyltransferase NuA4 or of its interactor Yng2, besides leading to S-phase defects and persistent checkpoint activation in the presence of genotoxic agents, is lethal for bmh mutants. Conversely, the lack of the histone deacetylase subunit Rpd3 or Sin3 partially suppresses the hypersensitivity to HU of bmh mutants and restores their ability to complete DNA replication in the presence of MMS or HU. These data strongly suggest that reduced acetyltransferase functionality might account for the S-phase defects of bmh mutants in the presence of genotoxic agents. Consistent with a role of 14-3-3 proteins in acetyltransferase and deacetylase regulation, we find that acetylation of H3 and H4 histone tails is reduced in temperature-sensitive bmh mutants shifted to the restrictive temperature. Moreover, Bmh proteins physically interact, directly or indirectly, with the Esa1 acetyltransferase throughout the cell cycle and with the Rpd3 deacetylase specifically during unperturbed S phase and after HU treatment. Taken together, our results highlight a novel role for 14-3-3 proteins in the regulation of histone acetyltransferase and deacetylase functions in the response to replicative stress.


Assuntos
Proteínas 14-3-3/metabolismo , Replicação do DNA , DNA Fúngico/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Ativação Enzimática , Genoma Fúngico/genética , Histona Acetiltransferases/genética , Histona Desacetilases/genética , Peptídeos e Proteínas de Sinalização Intracelular , Metanossulfonato de Metila/metabolismo , Mutação/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Genetics ; 173(2): 661-75, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16648583

RESUMO

14-3-3 proteins are highly conserved polypeptides that participate in many biological processes by binding phosphorylated target proteins. The Saccharomyces cerevisiae BMH1 and BMH2 genes, whose concomitant deletion is lethal, encode two functionally redundant 14-3-3 isoforms. To gain insights into the essential function(s) shared by these proteins, we searched for high-dosage suppressors of the growth defects of temperature-sensitive bmh mutants. Both the protein kinase C1 (Pkc1) and its upstream regulators Wsc2 and Mid2 were found to act as high dosage suppressors of bmh mutants' temperature sensitivity, indicating a functional interaction between 14-3-3 and Pkc1. Consistent with a role of 14-3-3 proteins in Pkc1-dependent cellular processes, shift to the restrictive temperature of bmh mutants severely impaired initiation of DNA replication, polarization of the actin cytoskeleton, and budding, as well as cell wall integrity. Because Pkc1 acts in concert with the Swi4-Swi6 (SBF) transcriptional activator to control all these processes, the defective G(1)/S transition of bmh mutants might be linked to impaired SBF activity. Indeed, the levels of the G(1) cyclin CLN2 transcripts, which are positively regulated by SBF, were dramatically reduced in bmh mutants. Remarkably, budding and DNA replication defects of bmh mutants were suppressed by CLN2 expression from an SBF-independent promoter, suggesting that 14-3-3 proteins might contribute to regulating the late G(1) transcriptional program.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas 14-3-3/genética , Actinas/metabolismo , Sequência de Bases , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Parede Celular/metabolismo , Citoesqueleto/metabolismo , DNA Fúngico/genética , Fase G1 , Dosagem de Genes , Genes Fúngicos , Genes Supressores , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Osmose , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
13.
Mol Cell Biol ; 24(23): 10126-44, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15542824

RESUMO

In Saccharomyces cerevisiae, Mec1/ATR plays a primary role in sensing and transducing checkpoint signals in response to different types of DNA lesions, while the role of the Tel1/ATM kinase in DNA damage checkpoints is not as well defined. We found that UV irradiation in G(1) in the absence of Mec1 activates a Tel1/MRX-dependent checkpoint, which specifically inhibits the metaphase-to-anaphase transition. Activation of this checkpoint leads to phosphorylation of the downstream checkpoint kinases Rad53 and Chk1, which are required for Tel1-dependent cell cycle arrest, and their adaptor Rad9. The spindle assembly checkpoint protein Mad2 also partially contributes to the G(2)/M arrest of UV-irradiated mec1Delta cells independently of Rad53 phosphorylation and activation. The inability of UV-irradiated mec1Delta cells to undergo anaphase can be relieved by eliminating the anaphase inhibitor Pds1, whose phosphorylation and stabilization in these cells depend on Tel1, suggesting that Pds1 persistence may be responsible for the inability to undergo anaphase. Moreover, while UV irradiation can trigger Mec1-dependent Rad53 phosphorylation and activation in G(1)- and G(2)-arrested cells, Tel1-dependent checkpoint activation requires entry into S phase independently of the cell cycle phase at which cells are UV irradiated, and it is decreased when single-stranded DNA signaling is affected by the rfa1-t11 allele. This indicates that UV-damaged DNA molecules need to undergo structural changes in order to activate the Tel1-dependent checkpoint. Active Clb-cyclin-dependent kinase 1 (CDK1) complexes also participate in triggering this checkpoint and are required to maintain both Mec1- and Tel1-dependent Rad53 phosphorylation, suggesting that they may provide critical phosphorylation events in the DNA damage checkpoint cascade.


Assuntos
Anáfase , Proteínas Fúngicas/fisiologia , Metáfase , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Cromátides/ultraestrutura , DNA/metabolismo , Dano ao DNA , DNA de Cadeia Simples/metabolismo , Fase G1 , Fase G2 , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Securina , Transdução de Sinais , Fuso Acromático , Fatores de Tempo , Raios Ultravioleta
14.
Genetics ; 165(4): 1717-32, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14704161

RESUMO

Two members of the 14-3-3 protein family, involved in key biological processes in different eukaryotes, are encoded by the functionally redundant Saccharomyces cerevisiae BMH1 and BMH2 genes. We produced and characterized 12 independent bmh1 mutant alleles, whose presence in the cell as the sole 14-3-3 source causes hypersensitivity to genotoxic agents, indicating that Bmh proteins are required for proper response to DNA damage. In particular, the bmh1-103 and bmh1-266 mutant alleles cause defects in G1/S and G2/M DNA damage checkpoints, whereas only the G2/M checkpoint is altered by the bmh1-169 and bmh1-221 alleles. Impaired checkpoint responses correlate with the inability to maintain phosphorylated forms of Rad53 and/or Chk1, suggesting that Bmh proteins might regulate phosphorylation/dephosphorylation of these checkpoint kinases. Moreover, several bmh1 bmh2Delta mutants are defective in resuming DNA replication after transient deoxynucleotide depletion, and all display synthetic effects when also carrying mutations affecting the polalpha-primase and RPA DNA replication complexes, suggesting a role for Bmh proteins in DNA replication stress response. Finally, the bmh1-169 bmh2Delta and bmh1-170 bmh2Delta mutants show increased rates of spontaneous gross chromosomal rearrangements, indicating that Bmh proteins are required to suppress genome instability.


Assuntos
Dano ao DNA , Replicação do DNA , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Proteínas 14-3-3 , Sequência de Aminoácidos , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Rearranjo Gênico , Instabilidade Genômica , Dados de Sequência Molecular , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...