Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 61(19): 7221-7235, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27649474

RESUMO

In 2010, the NCS (Netherlands Commission on Radiation Dosimetry) installed a subcommittee to develop guidelines for quality assurance and control for volumetric modulated arc therapy (VMAT) treatments. The report (published in 2015) has been written by Dutch medical physicists and has therefore, inevitably, a Dutch focus. This paper is a condensed version of these guidelines, the full report in English is freely available from the NCS website www.radiationdosimetry.org. After describing the transition from IMRT to VMAT, the paper addresses machine quality assurance (QA) and treatment planning system (TPS) commissioning for VMAT. The final section discusses patient specific QA issues such as the use of class solutions, measurement devices and dose evaluation methods.


Assuntos
Algoritmos , Guias de Prática Clínica como Assunto/normas , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/normas , Humanos , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
2.
Med Phys ; 38(1): 142-50, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21361183

RESUMO

PURPOSE: A biomechanical model was constructed to give insight into pelvic organ motion as a result of bladder filling changes. METHODS: The authors used finite element (FE) modeling to simulate bladder wall deformation caused by urine inflow. For ten volunteers, a series of MRI scans of the pelvic area was recorded at regular intervals of 10 min over 1 h. For the series of scans, the bladder volume gradually increased while the rectal volume was constant. The MR image with the bladder volume closest to 250 ml was selected as the reference in each volunteer. All pelvic structures were defined from the reference image including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, and the rest of the body. These structures were translated to FE meshes. Using appropriate material properties for all organs, deformations of these organs as a response to changing bladder pressure were computed. RESULTS: The computation results showed realistic anisotropic deformation of the bladder wall: The bladder became more elongated in the cranial and anterior directions with increasing bladder volume. After fitting the volume of the computed bladder to the actual bladder volume on the test images, the computed bladder shape agreed well with the real bladder shape (overlap from 0.79 to 0.93). The average mean bladder wall prediction errors of all the volunteers were 0.31 cm average and 0.29 cm SD. CONCLUSIONS: In conclusion, a FE based mechanical bladder model shows promise for the prediction of the short-term bladder shape change using only one pelvic scan and volume change of the bladder as input. The accuracy levels achieved with this method are likely mostly limited by inaccuracies in material properties and sliding tissue between organs, which has not been modeled. This model can potentially be used to improve image-guided radiotherapy for bladder cancer patients, i.e., by prediction short-term bladder deformation.


Assuntos
Análise de Elementos Finitos , Modelos Biológicos , Radioterapia Assistida por Computador/métodos , Neoplasias da Bexiga Urinária/radioterapia , Bexiga Urinária/patologia , Fenômenos Biomecânicos , Módulo de Elasticidade , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Bexiga Urinária/efeitos da radiação , Neoplasias da Bexiga Urinária/diagnóstico
3.
Int J Radiat Oncol Biol Phys ; 64(5): 1551-8, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16580504

RESUMO

PURPOSE: First, to quantify bladder-tumor motion in 3 dimensions during a 4-week to 5-week course of external radiotherapy. Second, to relate the motion to the tumor location on the bladder wall. Third, to extensively evaluate gross tumor volume (GTV) shape and volume changes during the course of the treatment. METHODS AND MATERIALS: Multiple repeat computed tomography (CT) images were obtained for 21 bladder cancer patients. These scans were matched to the rigid bony anatomy. For each patient, the main direction and magnitude of the tumor movement was determined by use of principle-component analysis. To study GTV shape changes, all GTVs were registered to the GTV in the planning CT scan, and the residual shape errors were determined by measurement of edge variations perpendicular to the median surface. RESULTS: Gross tumor volume translations were largest in cranial-caudal and anterior-posterior direction (SD, 0.1 to approximately 0.9 cm). The translations were strongly correlated with the tumor location on the bladder wall. The average value of the local standard deviations of the GTV shape ranged from 0.1 to approximately 0.35 cm. CONCLUSIONS: Despite large differences in bladder filling, variations in GTV shape were small compared with variations in GTV position. Geometric uncertainties in the GTV position depended strongly on the tumor location on the bladder wall.


Assuntos
Movimento , Radioterapia Assistida por Computador/métodos , Neoplasias da Bexiga Urinária/radioterapia , Bexiga Urinária , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/patologia
4.
Med Phys ; 32(8): 2590-7, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16193789

RESUMO

The feasibility of high precision radiotherapy to the bladder region is limited by bladder motion and volume changes. In the near future, we plan to begin treatment delivery of bladder cancer patients with the acquisition of a cone beam CT image on which the complete bladder will be semi-automatically localized. Subsequently, a bladder shape model that was developed in a previous study will be used for bladder localization and for the prediction of shape changes in the time interval between acquisition and beam delivery. For such predictions, knowledge about urinary inflow rate is required. Therefore, a series of MR images was acquired over 1 h with time intervals of 10 min for 18 healthy volunteers. To gain insight in the reproducibility of the bladder shape over longer periods of time, two additional MRI series were recorded for 10 of the volunteers. To a good approximation, the bladder volume increased linearly in time for all individuals. Despite receiving drinking instructions, we found a large variation in the inflow rate between individuals, ranging from 2.1 to 15 cc/min (mean value: 9 +/- 3 cc/min). In contrast, the intravolunteer variation was much smaller, with a mean standard deviation (SD) of 0.4 cc/min. The inflow rate was linearly correlated with age (negative slope). To study the reproducibility of the bladder shape, we compared bladder shapes of equal volume. For all individuals, the caudal part of the bladder was the most reproducible (variations<0.3 cm in all cases). The cranial and posterior parts of the bladder was much less reproducible, with local SD values up to approximately 1.2 cm for bladders with a volume of 200 cc. These large long-term variations were primarily caused by changes in position and filling of the small bowel and rectum. However, for short time intervals, the rectal filling was (nearly) constant. Therefore, the reproducibility of urinary inflow, combined with the previously developed shape model gives us an excellent tool to predict short-term shape changes. We intend to use this tool for further improvement of image-guided radiotherapy for bladder cancer patients.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Bexiga Urinária/anatomia & histologia , Bexiga Urinária/fisiologia , Micção/fisiologia , Urodinâmica/fisiologia , Adulto , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão/fisiologia , Reto/anatomia & histologia , Reto/fisiologia , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Med Phys ; 31(6): 1415-23, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15259644

RESUMO

The purpose of this study is to develop a model that quantifies in three dimensions changes in bladder shape due to changes in bladder and/or rectal volume. The new technique enables us to predict changes in bladder shape over a short period of time, based on known urinary inflow. Shortly prior to the treatment, the patient will be scanned using a cone beam CT scanner (x-ray volume imager) that is integrated with the linear accelerator. After (automated) delineation of the bladder, the model will be used to predict the short-term shape changes of the bladder for the time interval between image acquisition and dose delivery. The model was developed using multiple daily CT scans of the pelvic area of 19 patients. For each patient, the rigid bony structure in follow-up scans was matched to that of the planning CT scan, and the outer bladder and rectal wall were delineated. Each bladder wall was subdivided in 2500 domains. A fixed reference point inside the bladder was used to calculate for each bladder structure a "Mercator-like" 2D scalar map (similar to a height map of the globe), containing the distances from this reference point to each domain on the bladder wall. Subsequently, for all bladder shapes of a patient and for all domains on the wall individually, the distance to the reference point was fitted by a linear function of both bladder and rectal volume. The model uses an existing bladder structure to create a new structure via expansion (or contraction), until the expressed volume is reached. To evaluate the predictive power of the model, the jack-knife method was used. The errors in the fitting procedure depended on the part of the bladder and range from 0 to 0.5 cm (0.2 cm on average). It was found that a volume increase of 150 cc can lead to a displacement up to about 2.5 cm of the cranial part of the bladder. With the model, the uncertainty in the position of the bladder wall can be reduced down to a maximum value of about 0.5 cm in case the bladder volume increase is known. Furthermore, it was found that a change in rectal filling causes a shift of the bladder, while its shape is hardly influenced. In conclusion, we developed a model that describes the bladder shape and position as a function of the bladder volume and the rectal filling. The model accurately describes the complex shape of the bladder as it works on each domain of the bladder separately.


Assuntos
Modelos Anatômicos , Bexiga Urinária/anatomia & histologia , Fenômenos Biofísicos , Biofísica , Simulação por Computador , Humanos , Movimento , Planejamento da Radioterapia Assistida por Computador , Reto/anatomia & histologia , Tomografia Computadorizada por Raios X , Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...