Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37185233

RESUMO

BACKGROUND: Chordoma is an extremely rare, locally aggressive malignant bone tumor originating from undifferentiated embryonic remnants. There are no effective therapeutic strategies for chordoma. Herein, we aimed to explore cellular interactions within the chordoma immune microenvironment and provide new therapeutic targets. METHODS: Spectrum flow cytometry and multiplex immunofluorescence (IF) staining were used to investigate the immune microenvironment of chordoma. Cell Counting Kit-8, Edu, clone formation, Transwell, and healing assays were used to validate tumor functions. Flow cytometry and Transwell assays were used to analyze macrophage phenotype and chemotaxis alterations. Immunohistochemistry, IF, western blot, PCR, and ELISA assays were used to analyze molecular expression. An organoid model and a xenograft mouse model were constructed to investigate the efficacy of maraviroc (MVC). RESULTS: The chordoma immune microenvironment landscape was characterized, and we observed that chordoma exhibits a typical immune exclusion phenotype. However, macrophages infiltrating the tumor zone were also noted. Through functional assays, we demonstrated that chordoma-secreted CCL5 significantly promoted malignancy progression, macrophage recruitment, and M2 polarization. In turn, M2 macrophages markedly enhanced the proliferation, invasion, and migration viability of chordoma. CCL5 knockdown and MVC (CCL5/CCR5 inhibitor) treatment both significantly inhibited chordoma malignant progression and M2 macrophage polarization. We established chordoma patient-derived organoids, wherein MVC exhibited antitumor effects, especially in patient 4, with robust killing effect. MVC inhibits chordoma growth and lung metastasis in vivo. CONCLUSIONS: Our study implicates that the CCL5-CCR5 axis plays an important role in the malignant progression of chordoma and the regulation of macrophages, and that the CCL5-CCR5 axis is a potential therapeutic target in chordoma.


Assuntos
Cordoma , Macrófagos Associados a Tumor , Humanos , Animais , Camundongos , Macrófagos Associados a Tumor/metabolismo , Cordoma/tratamento farmacológico , Cordoma/metabolismo , Macrófagos , Maraviroc/metabolismo , Modelos Animais de Doenças , Microambiente Tumoral , Quimiocina CCL5/metabolismo
2.
Heliyon ; 9(5): e15527, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37205995

RESUMO

Background: Osteosarcoma initially metastasing to bone only shows distinct biological features compared to osteosarcoma that firstly metastasizes to the lung, which suggests us underlying different genomic pathogenetic mechanism. Methods: We analyzed whole-exome sequencing (WES) data for 38 osteosarcoma with paired samples in different relapse patterns. We also sought to redefine disease subclassifications for osteosarcoma based on genetic alterations and correlate these genetic profiles with clinical treatment courses to elucidate potential evolving cladograms. Results: We investigated WES of 12/38 patients with high-grade osteosarcoma (31.6%) with initial bone metastasis (group A) and 26/38 (68.4%) with initial pulmonary metastasis (group B), of whom 15/38 (39.5%) had paired samples of primary lesions and metastatic lesions. We found that osteosarcoma in group A mainly carries single-nucleotide variations displaying higher tumor mutation burden and neoantigen load and more tertiary lymphoid structures, while those in group B mainly exhibits structural variants. High conservation of reported genetic sequencing over time in their evolving cladograms. Conclusions: Osteosarcoma with mainly single-nucleotide variations other than structural variants might exhibit biological behavior predisposing toward bone metastases as well as better immunogenicity in tumor microenvironment.

3.
Cell Death Discov ; 9(1): 64, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792585

RESUMO

CircRNAs play crucial roles in various malignancies via an increasing number of reported regulatory mechanisms, including the classic sponging mechanism between circRNAs and micro RNAs (miRNAs). We performed bioinformatic analyses and identified circTLK1 as a regulator of malignant chordoma progression. Moreover, we observed that circTLK1 showed high expression in chordoma cells and tissues, while circTLK1 interference suppressed chordoma cell proliferation and invasion. In addition, circTLK1 directly interacted with miR-16-5p, which has previously been shown to repress chordoma, and circTLK1 knockdown suppressed Smad3 expression. Chromatin immunoprecipitation sequencing further demonstrated that Smad3 acts as a positive regulator by interacting with TLK1, thereby mediating the circTLK1/miR-16-5p/Smad3 positive feedback axis. Taken together, our findings suggested that the disruption of the circTLK1/miR-16-5p/Smad3 positive feedback pathway, particularly via the Smad3 inhibitor SIS3, could be a promising therapeutic strategy.

4.
Autophagy ; 19(6): 1693-1710, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36451342

RESUMO

Chemotherapy is an important treatment modality for osteosarcoma (OS), but the development of chemoresistance limits the therapeutic efficacy of OS and results in a poor prognosis. Thus, a better understanding of the mechanisms underlying chemoresistance in OS is essential. We previously demonstrated that COPS3/CSN3 (COP9 signalosome subunit 3) functions as an oncogene to promote OS cells lung metastasis, which is closely related to chemoresistance. Here, we showed that COPS3 was significantly upregulated in OS tissues with poor response to preoperative chemotherapy. Moreover, COPS3 depletion made OS cells more sensitive to cisplatin treatment in vitro and in vivo, implicating COPS3 as a driver of cisplatin resistance. Mechanistic investigations showed that COPS3 induced a cytoprotective macroautophagy/autophagy in response to cisplatin. Specifically, we identified FOXO3 as a critical target of COPS3, as high expression of COPS3 enhanced the nuclear abundance of FOXO3 and increased the expression of FOXO3-responsive genes, promoting autophagosome formation and maturation. In turn, FOXO3 regulated COPS3 levels by inhibiting ubiquitin-mediated degradation and attenuating SKP2-mediated COPS3 inhibition, cooperatively maintaining a high level of COPS3. In both COPS3-expressing OS cells and a murine xenograft model, inhibition of autophagy could also overcome resistance to cisplatin. Collectively, our results offer insights into the mechanisms of cisplatin resistance and suggest that targeting COPS3-mediated autophagy is a promising therapeutic strategy for overcoming the cisplatin resistance of OS.Abbreviations: 3-MA: 3-methyladenine; BECN1: beclin 1; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; COPS3/CSN3: COP9 signalosome subunit 3; CQ: chloroquine; DEGs: differentially expressed genes; FOXO3: forkhead box O3; GFP: green fluorescent protein; IC50: 50% inhibitory concentration; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; mRFP: monomeric red fluorescent protein; OS: osteosarcoma; PBS: phosphate-buffered saline; qRT-PCR: quantitative real-time PCR; RAB7: RAB7, member RAS oncogene family; RPS6KB1/p70S6K1: ribosomal protein S6 kinase B1; SEM: standard error of the mean; shRNA: short hairpin RNA; siRNA: small interfering RNA; SKP2: S-phase kinase associated protein 2; TEM: transmission electron microscopy; UPS: ubiquitin-proteasome system.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Animais , Camundongos , Autofagia/genética , Cisplatino/farmacologia , Complexo do Signalossomo COP9 , Retroalimentação , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Ubiquitina , Proteínas Proto-Oncogênicas , Proteína Forkhead Box O3/genética
5.
Cancer Lett ; 536: 215660, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35318116

RESUMO

Despite recent improvements in the therapeutic management of osteosarcoma (OS), the ongoing challenges in overcoming resistance to tyrosine kinase inhibitors (TKIs) warrant new strategies to improve overall patient survival. In this study, we established four anlotinib-resistant OS cell lines and demonstrated that the mechanism of anlotinib resistance is due to the loss of PTEN and reactivation of the MAPK pathway. Reduced PTEN expression was also observed in tumor samples from patients with OS and lung metastasis. We investigated the effects of an orally active PI3K inhibitor, either alone or in combination with anlotinib, on the progression of resistant cells and a xenograft nude mouse model. Notably, PI3K inhibitor suppressed anlotinib-resistant OS cell proliferation, migration, invasion, and cytoskeleton formation, and induced apoptosis. Combined treatment with anlotinib augmented these effects by restoring PTEN expression and decreasing MAPK and PI3K/AKT/mTOR signaling. PI3K inhibitors could reverse anlotinib resistance in OS, limiting OS cell development in combination with anlotinib. Our findings rationalize further studies on the applications of PI3K inhibitors that can be clinically used in anlotinib-refractory OS management.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Osteossarcoma , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Indóis , Camundongos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas
6.
Cancer Sci ; 113(1): 120-131, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34592064

RESUMO

Osteosarcoma (OS) is a primary and highly malignant mesenchymal tissue tumor. The specific pathological mechanism underlying disease initiation or progression remains unclear. Circular RNAs (circRNAs) are a type of covalently circular RNA with a head-to-tail junction site. In this study, we aimed to investigate the sponging mechanism between circRNAs and microRNAs (miRNAs) in OS. Based on the inhibited effect of miR-16-5p reported on OS, circUSP34 was analyzed as a sponge of miR-16-5p via Starbase. We found that circUSP34 promoted the proliferation, migration, and invasion of OS in vitro and in vivo. circUSP34 increased but miR-16-5p decreased in OS by qRT-PCR. Function assays showed that the malignancy of OS cells, including proliferation, migration, and invasion, was inhibited after knocking out circUSP34. Western blotting results showed that the expression level of vimentin and Ki-67 decreased. Similarly, miR-16-5p mimic compromised the proliferation, migration, and invasion of OS cells. FISH assay results indicated that circUSP34 and miR-16-5p were colocalized in the cytoplasm. The sponging mechanism of circUSP34 and miR-16-5p was verified by dual-luciferase reporter assay, RNA immunoprecipitation (RIP), and RNA pull down assays. Interestingly, the miR-16-5p inhibitor partly reversed the inhibitory effect of sh-circUSP34 on the malignancy of OS cells. Further, mice tumors for IHC indicated that vimentin, N-cadherin, and Ki-67 protein expression decreased, but E-cadherin protein expression increased. Collectively, circUSP34 promoted OS malignancy, including proliferation, migration, and invasion, by sponging miR-16-5p. It can serve as a potential therapeutic target and biomarker.


Assuntos
Neoplasias Ósseas/patologia , MicroRNAs/genética , Osteossarcoma/patologia , RNA Circular/genética , Animais , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Citoplasma , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Transplante de Neoplasias , Osteossarcoma/genética
7.
Front Cell Dev Biol ; 9: 731311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692688

RESUMO

Background: Abnormal expression of lncRNA is closely related to the occurrence and metastasis of osteosarcoma. The tumor immune microenvironment (TIM) is considered to be an important factor affecting the prognosis and treatment of osteosarcoma. This study aims to explore the effect of immune-related lncRNAs (IRLs) on the prognosis of osteosarcoma and its relationship with the TIM. Methods: Ninety-five osteosarcoma samples from the TARGET database were included. Iterative LASSO regression and multivariate Cox regression analysis were used to screen the IRLs signature with the optimal AUC. The predict function was used to calculate the risk score and divide osteosarcoma into a high-risk group and low-risk group based on the optimal cut-off value of the risk score. The lncRNAs in IRLs signature that affect metastasis were screened for in vitro validation. Single sample gene set enrichment analysis (ssGSEA) and ESTIMATE algorithms were used to evaluate the role of TIM in the influence of IRLs on osteosarcoma prognosis. Results: Ten IRLs constituted the IRLs signature, with an AUC of 0.96. The recurrence and metastasis rates of osteosarcoma in the high-risk group were higher than those in the low-risk group. In vitro experiments showed that knockdown of lncRNA (AC006033.2) could increase the proliferation, migration, and invasion of osteosarcoma. ssGSEA and ESTIMATE results showed that the immune cell content and immune score in the low-risk group were generally higher than those in the high-risk group. In addition, the expression levels of immune escape-related genes were higher in the high-risk group. Conclusion: The IRLs signature is a reliable biomarker for the prognosis of osteosarcoma, and they alter the prognosis of osteosarcoma. In addition, IRLs signature and patient prognosis may be related to TIM in osteosarcoma. The higher the content of immune cells in the TIM of osteosarcoma, the lower the risk score of patients and the better the prognosis. The higher the expression of immune escape-related genes, the lower the risk score of patients and the better the prognosis.

8.
Int J Gen Med ; 14: 4819-4827, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475776

RESUMO

BACKGROUND: Due to the obvious heterogeneity of osteosarcoma, many patients are not sensitive to neoadjuvant chemotherapy. In this study, the clinical characteristics and auxiliary examinations of patients with osteosarcoma were used to predict the effect of preoperative chemotherapy, so as to guide the clinical adjustment of the treatment plan to improve the prognosis of patients. METHODS: In this study, 90 patients with pathologically confirmed osteosarcoma were included, and they were randomly divided into training cohort (n=45) and validation cohort (n=45). A prediction model of preoperative chemotherapy efficacy for osteosarcoma was established by multivariate logistic regression analysis, and a nomogram was used as the visualization of the model. The ROC curve and C-index were used to evaluate the accuracy of the nomogram. Decision curve analysis (DCA) was used to evaluate the net benefit of the nomogram in predicting the efficacy of neoadjuvant chemotherapy under different threshold probabilities. RESULTS: In the study, the age, gender, location, tumor volume, metastasis at the first visit, MSTS staging, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) were used in the multivariate logistic regression analysis and the construction of the nomogram. The AUC and C-index of the training cohort were 0.793 (95% CI: 0.632, 0.954) and 0.881 (95% CI: 0.776, 0.986), respectively. The AUC and C-index in the validation cohort were 0.791 (95% CI: 0.644, 0.938) and 0.813 (95% CI: 0.679, 0.947), respectively, which were close to the training cohort. DCA showed that the model had good clinical application value. CONCLUSION: Based on the clinical characteristics of patients and auxiliary examinations, the nomogram can be good used to predict the efficacy of preoperative chemotherapy for osteosarcoma.

9.
Aging (Albany NY) ; 13(13): 17901-17913, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34170850

RESUMO

BACKGROUND: Osteosarcoma (OS) is characterized by a high rate of metastasis. It has been found that tumor cells can bypass apoptosis which leads to an uncontrolled proliferation, but chloroquine (CQ) can have an effect on the tumors by inducing apoptosis. We aimed to explore the effects and the hypothetical mechanism of CQ effects on OS. METHODS: We first estimated the CQ effects on proliferation, apoptosis, migration, invasion, and lamellipodia formation of OS cells. Mice bearing xenograft model were used to test the anti-tumor growth and lung metastasis effects of CQ in OS. Western blot and immunohistochemistry were used to explore the mechanism of CQ effects and the association between p-STAT3 expression and lung metastasis of OS patients. RESULTS: CQ induces the apoptosis and suppressed the viability, proliferation, migration, invasion, and lamellipodia formation of OS cells in vitro. In vivo experiments demonstrated that CQ inhibited tumor growth and lung metastasis. CQ induced apoptosis was dependent on the lysosomal inhibition and inhibition of protein turnover. The lung metastasis was associated with the p-STAT3 expression in OS patients. CONCLUSION: CQ inhibited progression of OS cells in vitro, and suppressed tumor growth and lung metastasis in vivo. p-STAT3 can be a predictive biomarker for lung metastasis in osteosarcoma patients.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Proliferação de Células/efeitos dos fármacos , Cloroquina/farmacologia , Invasividade Neoplásica/patologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Fator de Transcrição STAT3/metabolismo , Adulto , Animais , Neoplasias Ósseas/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica/prevenção & controle , Osteossarcoma/metabolismo , Fosforilação , Pseudópodes/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
10.
Cancer Cell Int ; 21(1): 192, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794884

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most common primary malignant bone tumor in young people. Tumor-associated macrophages (TAMs) have been reported to play an important role in the development of osteosarcoma. However, the detailed molecular mechanisms remain largely unknown and need to be elucidated. Recently, exosomes have been reported as the crucial mediator between tumor cells and the tumor microenvironment. And a lot of lncRNAs have been reported to act as either oncogenes or tumor suppressors in osteosarcoma. In this research, we aim to explore the role of macrophages-derived exosomal lncRNA in osteosarcoma development and further elucidated the potential molecular mechanisms involved. METHODS: TAMs were differentiated from human mononuclear cells THP-1, and a high-throughput microarray assay was used to analyze the dysregulated lncRNAs and miRNAs in osteosarcoma cells co-cultured with macrophages-derived exosomes. Western blot, qRT-PCR assays, and Dual-luciferase reporter assay were used to verify the interaction among LIFR-AS1, miR-29a, and NFIA. Cck-8, EdU, colony formation assay, wound-healing, and transwell assay were performed to explore the characterize the proliferation and metastasis ability of OS cells. And qPCR, Western blots, immunohistochemistry, and cell immunofluorescence were used to detect the expression of relative genes or proteins. RESULTS: In this study, we found that THP-1-induced macrophage-derived exosomes could facilitate osteosarcoma cell progression both in vitro and in vivo. Then, the results of the high-throughput microarray assay showed that LIFR-AS1 was highly expressed and miR-29a was lowly expressed. Furthermore, LIFR-AS1 was identified as a miR-29a sponge, and NFIA was validated as a direct target of miR-29a. Functional assays demonstrated that knockdown of exosomal LIFR-AS1 could attenuate the promotion effects of macrophages-derived exosomes on osteosarcoma cell progression and miR-29a inhibition could reserve the effect of LIFR-AS1-knockdown exosomes. Correspondingly, NFIA-knockdown could partially reverse the tumor inhibition effect of miR-29a on osteosarcoma cells. CONCLUSIONS: Taken together, macrophages-derived exosomal lncRNA LIFR-AS1 can promote osteosarcoma cell proliferation, invasion, and restrain cell apoptosis via miR-29a/NFIA axis, which can act as a potential novel therapeutic target for osteosarcoma therapy.

11.
Cell Oncol (Dordr) ; 44(3): 525-539, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33788151

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most common primary malignant bone tumor. Compared with previous treatment modalities, such as amputation, more recent comprehensive treatment modalities based on neoadjuvant chemotherapy combined with limb salvage surgery have improved the survival rates of patients. Osteosarcoma treatment has, however, not further improved in recent years. Therefore, attention has shifted to the tumor microenvironment (TME) in which osteosarcoma cells are embedded. Therapeutic targets in the TME may be key to improving osteosarcoma treatment. Tumor-associated macrophages (TAMs) are the most common immune cells within the TME. TAMs in osteosarcoma may account for over 50% of the immune cells, and may play important roles in tumorigenesis, angiogenesis, immunosuppression, drug resistance and metastasis. Knowledge on the role of TAMs in the development, progression and treatment of osteosarcoma is gradually improving, although different or even opposing opinions still remain. CONCLUSIONS: TAMs may participate in the malignant progression of osteosarcoma through self-polarization, the promotion of blood vessel and lymphatic vessel formation, immunosuppression, and drug resistance. Besides, various immune checkpoint proteins expressed on the surface of TAMs, such as PD-1 and CD47, provide the possibility of the application of immune checkpoint inhibitors. Several clinical trials have been carried out and/or are in progress. Mifamotide and the immune checkpoint inhibitor Camrelizumab were both found to be effective in prolonging progression-free survival. Thus, TAMs may serve as attractive therapeutic targets. Targeting TAMs as a complementary therapy is expected to improve the prognosis of osteosarcoma. Further efforts may be made to identify potential beneficiaries of TAM-targeted therapies.


Assuntos
Neoplasias Ósseas/imunologia , Osteossarcoma/imunologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Neoplasias Ósseas/patologia , Progressão da Doença , Humanos , Osteossarcoma/patologia , Macrófagos Associados a Tumor/patologia
12.
Cancer Manag Res ; 12: 4129-4137, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606920

RESUMO

PURPOSE: Our research aimed to illuminate the role of miR-100-5p in chordoma and potential mechanism. MATERIALS AND METHODS: We used microRNA array analysis to explore differentially expressed miRNAs in chordoma tissue and then verified by qRT-PCR. Cell proliferation and transwell assay were used to evaluate the function of miR-100-5p. Cell apoptosis was analyzed by flow cytometry, and using biological software, we predicted that the insulin-like growth factor 1 receptor (IGF1R) could be the target gene of miR-100-5p, which was then validated by dual luciferase assays and Western blot. RESULTS: miR-100-5p was downregulated in chordoma tissues. Overexpression of miR-100-5p could suppress the growth of chordoma both in vitro and in vivo, and miR-100-5p could inhibit the migration and invasion of chordoma cells partially by suppressing epithelial-mesenchymal transition (EMT). Furthermore, IGF1R was validated as the target gene of miR-100-5p and expressed in most chordoma tissues. CONCLUSION: In conclusion, our results showed that miR-100-5p was lowly expressed in chordoma and inhibited tumor malignant progression by targeting IGF1R.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...