Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Open ; 9(10): e032742, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31662402

RESUMO

INTRODUCTION: Metabolically healthy obese phenotype (MHO) refers to obese individuals with an adequate metabolic profile and absence of metabolic syndrome. Many prospective studies have reported the benign condition relating the MHO phenotype and its potential role in reducing risk of cardiovascular disease, total cancer, and all-cause and cause-specific mortality. However, inconsistent results were found and the question remains controversial. We aim to conduct a systematic review and meta-analysis to clarify the associations these associations from relevant prospective studies. METHODS AND ANALYSIS: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Protocols 2015 statement was used to prepare this protocol. MEDLINE, Web of Science databases, EMBASE and Cochrane Database will be used for literature search from their inception up to December 2019 with restriction of published studies in English. Published prospective studies reporting adjusted relative risk (RR) estimates for the association between MHO phenotype and cardiovascular disease, total cancer, all-cause or cause-specific mortality will be included. The process of study screening, selection and data extraction will be performed independently by two reviewers, and the risk of bias for the studies included will be assessed using the Newcastle-Ottawa Quality Assessment Scale. HRs or RRs for disease events and mortality with 95% CIs will be considered as primary outcomes, and summary HRs/RRs will be pooled using random-effects models. The Cochrane's Q and the I2 statistics will be used to assess and quantify heterogeneity, respectively. Subgroup analysis will also be carried out according to study characteristics to investigate potential sources of heterogeneity. ETHICS AND DISSEMINATION: As this meta-analysis is performed based on the published studies, no ethical approval and patient safety considerations are required. The findings of the study will be reported and submitted to a peer-reviewed journals for publication. PROSPERO REGISTRATION NUMBER: CRD42019121766.


Assuntos
Doenças Cardiovasculares , Neoplasias , Obesidade Metabolicamente Benigna , Humanos , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/mortalidade , Causas de Morte , Protocolos Clínicos , Modelos Estatísticos , Neoplasias/etiologia , Neoplasias/mortalidade , Obesidade Metabolicamente Benigna/complicações , Obesidade Metabolicamente Benigna/mortalidade , Fenótipo , Fatores de Risco , Metanálise como Assunto , Revisões Sistemáticas como Assunto
2.
Oncol Lett ; 13(6): 4685-4690, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28599470

RESUMO

The present study assessed the effect of the lipid metabolism, fat mass and the obesity-associated gene (FTO), on energy metabolism of breast cancer cells. The human breast cancer cell lines, MCF-7 and MDA-MB-231, and HCC1937 human breast cells were studied. Real-time PCR was used to measure the levels of FTO mRNA from breast cancer cells and normal breast cells. MDA-MB-231 cells were transfected with miFTO inhibitor or inhibitor control, and cells were assessed for levels of lactic acid, ATP, pyruvate kinase activity, and hexokinase activity assay using specific kits. Western blot analysis was used to measure the levels of phosphatidylinositol 3-kinase (PI3K), p-PI3K, protein kinase B (Akt) and p-Akt in transfected breast cancer cells. The expression of FTO was significantly increased in MCF-7 and MDA-MB-231 cells compared with HCC1937 cells (P<0.01). The lactic acid content of breast cancer cells transfected with the miFTO inhibitor was significantly lower compared with cells transfected with the miFTO inhibitor control and nontransfected cells (P<0.05). The ATP content of breast cancer cells transfected with the miFTO inhibitor was significantly lower compared with the control group and inhibitor control group (P<0.05). The pyruvate kinase activity and hexokinase activity of breast cancer cells transfected with the miFTO inhibitor were significantly lower compared with the control group and inhibitor control group (P<0.01). Western blot analysis showed that after breast cancer cells were transfected with the miFTO inhibitor, the levels of PI3K, p-PI3K, Akt and p-Akt were significantly lower than in the control group and inhibitor control group. In conclusion, the FTO gene is overexpressed in breast cancer cells. Overexpression of the FTO gene can promote breast cancer cell glycolysis and the mechanism is related to the PI3K/AKT signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...